八十五學年度 雷子學 村日 科號 3 102 共 4 萬第 / 頁 *贕在試卷【答案卷】內作答

1, Sketch Bode plots for the magnitude of the following transfer function:

$$T(s) = 10^4 (1 + s/10^5)(1 + s/10^3)^{-1}(1 + s/10^4)^{-1}.$$

From your sketches determine approximate values for the magnitude at $\omega = 10^6 \text{ rad/sec. } (10\%)$

2. For the circuit in the following figure, let $R_B = 100 \text{K}\Omega$, $R_C = 10 \text{K}\Omega$, $V_{CC} = V_{EE} = 10 \text{V}$, and let the BJT have $\beta = 100$ and $V_4 = 100$ V. Find the values of

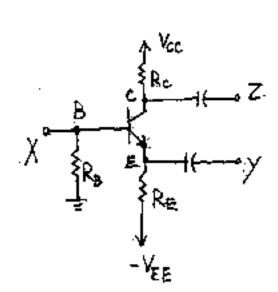
- (a) V_B, (1%)
- (b) V_E , (1%)

 V_A is the Early voltage

- (c) 1_C, (1%),
- (d) $V_{c_1}(1\%)$

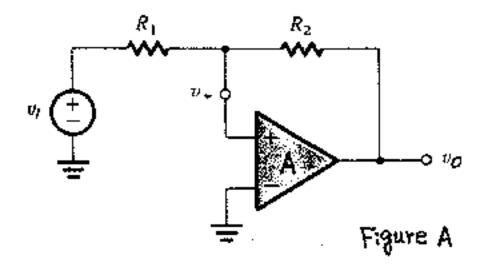
Also, find the values of the small-signal model parameters (at room temperature)

- (e) g_m, (2%),
- r_s (emitter resistance $=\frac{V_T}{V_s}$) (f) I_e , (1%),
- (g) \mathbf{r}_n , (2%) (h) \mathbf{r}_n (1%) $\Gamma_n \text{ (input resistance } = \frac{\sigma_{h_n}}{t_n} \text{)}$


at the bias point.

When connected in the common emitter configuration with $R_s = R_L = 10 \text{K}\Omega$, find the values of.

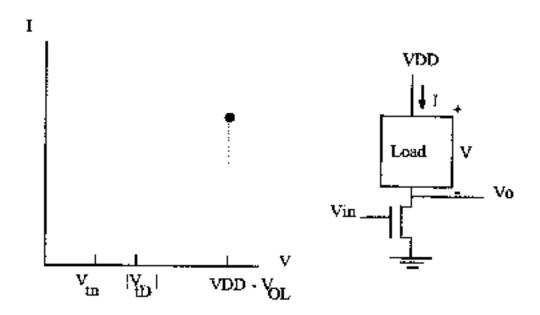
- (i) R_i , (2.5%)
- (j) R_0 , (2.5%),
- (k) A_v , (2.5%)
- (1) $A_{i'}$ (2.5%)


$$R_{S}$$
 : source resistance

$$R_{\pm}$$
: load resistance

國 立 清 華 大 學 命 題 紙

- 3. A circuit as shown in figure A consists of an ideal operational amplifier A, two resistors R_1 and R_2 , and an input signal source v_1 . Assuming that the operational amplifier is powered by $\pm V_m$ and its output voltage limits are 1V short of the power rail voltages.
 - (a) Analyze the circuit behaviors, and plot the voltage transfer characteristics (v₀ versus v₁), indicate all the voltages intersecting both v₀ and v₁ axes in terms of V_m, R₁, and R₂. (8%)
 - (b) From the results obtained in part (a), can you identify and give the common well-known name of the circuit? (2%)
 - (c) In your analysis in part (a), can you use the virtual ground concept which is often employed in analyzing circuits that contain operational amplifiers? Your answer must give supporting reasoning. (4%)
 - (d) If the circuit is intended to be used as a waveform shaping circuit, that is to shape a sinusoidal wave of v₁ = A_m sin ωt into a square wave at output v₀ with an amplitude of B_m, what is the maximum of B_m? And what is the design constraint on the relation among the parameters B_m, R₁, R₂, and A_m? (6%)


國 立 清 華 大 學 命 題 紙

八十五學年度 電機/電子系(所) 万 組碩士班研究生入學考試科目 電子學 科號 3102 共 夕 頁第 3 頁 *讀在試卷【答案卷】內作答

4 Estimate the high-band corner frequency $\omega_{\rm H}$ for the following circuit. Assume that $\beta = 100$ and $c_{\rm g} = 10c_{\rm u} = 1$ pF. (15%)

5. Explain why the output resistances of the following two cascode circuits are almost the same. (10%) How will you modify the circuits to obtain higher output resistances? (5%)

6. (10%) (a) Draw the connections of the depletion-NMOS load (with threshold voltage V_{tD}), the enhancement-NMOS load (with threshold voltage V_{tD}), and the resistor load (with value R) inverters as shown below. (b) Draw the I-V curves of these three implementations. Assume that all three curves meet at a point with V-VDD - V_{OL} .

7. (10%) Can you get an all pass filter from a (a) low-pass filter, (b) band-pass filter? Draw the circuit by using R, L, and C. (Hint: (a) first order and (b) second order)