國 立 清 華 大 學 命 題 紙

八十五學年度 電 後 工 考定 系 (所) 乙」 組碩士班研究生八學考試科目 副 號 要 表 為 科號 3003 共 3 頁第 | 頁 *讀在試卷【答案卷】內作答

1. When the input x(n) of a discrete-time linear-time invariant (LTI) system H(z) is

$$x(n) = (1/2)^n u(n) + 2^n u(-n-1)$$

where u(n) is a unit-step sequence, the output is given by

$$y(n) = 6(1/2)^n u(n) - 6(3/4)^n u(n)$$

- (a) Find the impulse response h(n) of the system for all values of n. (5%)
- (b) Determine the steady state response y(n) for large n, when the input is given by $x(n) = [1 + \cos(\pi n + 0.2\pi)]u(n)$. (5%)
- (c) Find the impulse response of the stable inverse system of H(z). (5%) (You need to write down all the derivations in detail)
- 2. Assume that x(n) is a discrete-time signal and $X(e^{i\Omega})$ is its Fourier transform.
 - (a) Write the expressions of the relationship between x(n) and $X(e^{j\Omega})$. Prove one of them. What are the physical meanings of these expressions? Is $X(e^{j\Omega})$ a continuous periodic function of Ω ? (5%)
 - (b) Find the inverse Fourier transform, denoted x'(n), of $Re\{X(e^{j\Omega})\}$ (real part of $X(e^{j\Omega})$). Does x'(n) have any symmetry properties? If yes, what are they? (5%)
 - (c) Assume that $\hat{X}(k) = X(e^{j\Omega})$ for $\Omega = 2\pi k/N$ and

$$\hat{x}(n) = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}(k) e^{j2\pi k n/N}$$

(inverse DFT of $\tilde{X}(k)$). What is the relationship between $\tilde{x}(n)$ and x(n)? (5%) (You need to write down all the derivations in detail)

3. The magnitude squared of the frequency response of an Nth-order continuous-time lowpass Butterworth filter (causal stable) is given by

$$|B_N(j\omega)|^2 = \frac{1}{1 + (\omega/\omega_c)^{2N}}$$

- (a) What is the transfer function $B_2(s)$? (5%)
- (b) What is the steady state response y(t) for large t, when the input of $B_2(s)$ is given by

$$x(t)=\sin(\omega_c t)u(t)$$

where u(t) is a unit-step function? (5%)

(You need to write down all the derivations in detail)

- 4. Consider a discrete-time LTI system with impulse response $h(n) = a^n u(n)$, where 0 < a < 0.5.
 - (a) Compute and plot the unit-step response s(n) of the system. (6%)
 - (b) Compute and plot the output y(n) of the system when the input is x(n) = u(n+2) 2u(n-3) + u(n-8). (6%)
- 5. Consider an invertible continuous-time LTI system with impulse response h(t) and frequency response $H(j\omega)$, where the corresponding inverse system has impulse response $h_I(t)$ and frequency response $H_I(j\omega)$.
 - (a) Write down the relationship between h(t) and $h_l(t)$. Also, express $H_l(j\omega)$ in terms of $H(j\omega)$, (3%)
 - (b) If $h(t) = \delta(t) e^{-2t}u(t)$, find $h_t(t)$. (4%)
 - (c) Let echoes occur every T seconds apart in a satellite communication system, and assume that the corresponding transmission channel can be modeled by a continuous-time LTI system with impulse response

$$h(t) = \sum_{k=0}^{\infty} c^k \delta(t - kT)$$

where c is a constant with $|c| \le 1$. Find the frequency response of h(t). Also, determine the impulse response and frequency response of the ideal echo canceller for the satellite communication system. (6%)

 A sampling process can be modeled as the multiplication of the input signal x(t) by a uniform impulse train

$$p(t) = \sum_{k=-\infty}^{\infty} \delta(t - kT)$$

where T is the sampling period. Let $X(j\omega)$ be the input spectrum.

(a) Show that the corresponding output spectrum is

$$Y(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X[j(\omega - k\omega_s)]$$

with $\omega_s = 2\pi / T$. (8%)

- (b) If $X(j\omega)$ is bandlimited with $|\omega| \le \omega_b$, find the condition for the sampled signal to be aliasing-free. (3%)
- (c) What is the physical interpretation of this sampling theorem on a pure sinusoidal signal? (2%)
- (d) Show how to recover x(t) from the sampled signal. (2%)

國 立 清 華 大 學 命 題 紙

八十五學年度 <u>電 換 工 彩</u> 系 (所) <u>Z」 組頭士班研究生入學考試 科目 試 認 學 系 統 / 科號 3003 共 3 買第 3 頁 *請在試卷【答案卷】內作答</u>

(Single-Sideband Amplitude-Modulated Discrete-Time Signals)
A discrete-time message sequence m(k) has a low-pass spectrum

$$M\left(e^{j\Omega}\right) = \sum_{k=-\infty}^{\infty} m\left(k\right) e^{-j\Omega k}$$

This sequence is amplitude-modulated to form $x(k) = m(k) \cos \Omega_c k$.

(a) Please express the spectrum of $x(k), \chi(e^{i\Omega})$, in terms of $M(e^{i\Omega})$. (2%)

(b) An ideal Hilbert transformer is defined as

$$H\left(e^{j\,\Omega}\right) \,=\, \left\{ \begin{array}{ll} -j, & 0 \leq \Omega < \pi \\ j, & -\pi \leq \Omega < 0 \end{array} \right.$$

Please find the corresponding impulse response h(n). (5%)

(c) Is h(n) realizable and stable? If yes, prove it. If no, state the reason and state the way to approximately implement it. (3%)

(d) Let $y(k) = m(k) + j\hat{m}(k)$, where $\hat{m}(k)$ is the Hilbert transform of m(k). Please find its Fourier transform $Y(e^{j\Omega})$ in terms of $M(e^{j\Omega})$ and $H(e^{j\Omega})$. (2%)

(e) From (d), find $Y(e^{j\Omega})$ in terms of $M(e^{j\Omega})$. (2%)

(f) An upper-sideband amplitude-modulated signal is

$$x_{U}\left(k\right)=m\left(k\right)\cos\Omega_{c}k-\bar{m}\left(k\right)\sin\Omega_{c}k$$

Please find the spectrum $X_U\left(e^{i\Omega}\right)$ of $x_U\left(k\right)$. (6%)