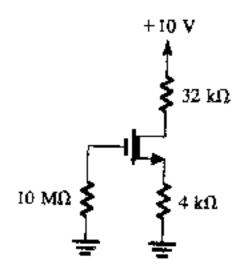
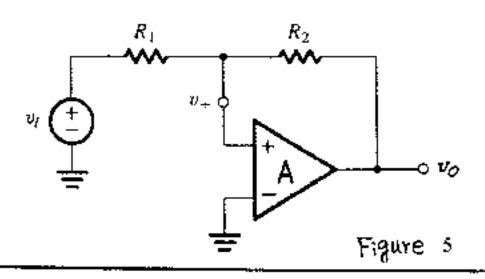

八十五學年度 **電機工程學** 系(所) 乙 組碩士班研究生入學考試 和自 電子學 科號 3002 共 3 頁第 1 頁 *請在試卷【答案卷】內作答

- 1. For the high-input-resistance metering circuit of Fig. 1 using a 1-mA meter movement, 5% (a) find the value of the resistor R such that full-scale reading is obtained for v_1 = 2.5V. 5% (b) If the meter resistor is 50 Ω , what is the OP amp output voltage at half scale?
- Sketch the transfer characteristic v₀ verse v_i for the limiter circuits shown in Fig. 2
 All diodes begin conducting at a forward voltage drop of 0.5V and display voltages drops of 0.7V when fully conducting. (10 %)

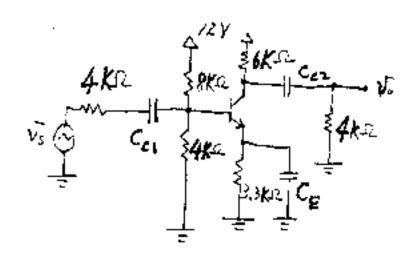


3. For the following circuit, find $W_{\rm s}$ in terms of $U_{\rm t}$ and $U_{\rm t}$. The BJT has $\beta=100$, $r_{\rm te}=1{\rm k}\Omega$, or $r_{\rm e}=10\Omega$ (12%).



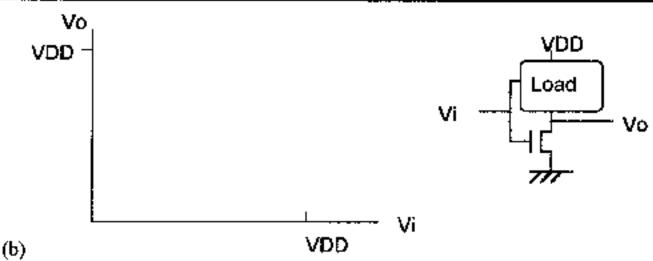
	八十五學年度	電機工程學_系	(所)	<u>Z</u>		組碩士班研究生入學考試
科目	電子學	科號 <u>3002</u> _共	3	真第 2	筫	*請在試卷【答案卷】內作答

4 Analyze the following to determine I_{D} and V_{D} . The depletion MOSFET has $V_{+} = -1v$ and $K = 0.5 \text{ mA/V}^{2}$ (8%).


- A circuit as shown in figure 5 consists of an ideal operational amplifier A, two resistors R_1 and R_2 , and an input signal source v_i . Assuming that the operational amplifier is powered by $\pm V_m$ and its output voltage limits are 1V short of the power rail voltages.
 - (a) Analyze the circuit behaviors, and plot the voltage transfer characteristics (v_0 versus v_1), indicate all the voltages intersecting both v_0 and v_1 axes in terms of V_m , R_1 , and R_2 . (8%)
 - (b) From the results obtained in part (a), can you identify and give the common well-known name of the circuit? (2%)
 - (c) In your analysis in part (a), can you use the virtual ground concept which is often employed in analyzing circuits that contain operational amplifiers? Your answer must give supporting reasoning. (4%)
 - (d) If the circuit is intended to be used as a waveform shaping circuit, that is to shape a sinusoidal wave of v₁ = A_m sin ωt into a square wave at output v₀ with an amplitude of B_m, what is the maximum of B_m? And what is the design constraint on the relation among the parameters B_m, R₁, R₂, and A_m? (6%)

 八十五學年度
 電機工程學
 系(所)
 乙
 組碩士班研究生入學者試

 科目
 電子學
 科號
 3002 共 3 寅第 3 頁 *請在試卷【答案卷】內作答


- Explain why an emitter resistor can effectively increase the output resistance of a commonemitter amplifier. Please also find the enlargement factor for this effect. (10%)
- 7. Estimate the high-band corner frequency $\omega_{\rm H}$ for the following circuit. Assume that $\beta = 100$ and $c_{\rm g} = 10c_{\rm p} = 1$ pF. (10%)

- 8. Compare the inverters implemented in CMOS, depletion NMOS load (Dep.-NMOS), and Enhancement NMOS (Enh-NMOS) load with "equal" dimensions.
- 9% (a) Fill the blanks with simple comments or with correct connections and

11% (b) draw the voltage transfer characteristics of those 3 inverters, mark V_{OH} , V_{OL} , V_{IH} , V_{IL} at each curve.

(a)	CMOS Inverter	DepNMOS	EnhNMOS
Power Dissipations			
Draw connections (include substrate)		 %	U VDD

