類組:<u>電機類</u> 科目:<u>控制系統(300D)</u>

※請在答案卷內作答

1. (16%) Consider the closed-loop feedback system as given by

Figure 1.

where G_P and G_C denote the system plant and controller, respectively. Let the Laplace transform of the error e(t) be defined as $E(s) = U(s) - Y(s) \cdot H(s)$, where U(s), Y(s) and H(s)denote the Laplace transform of the input, output and feedback block, respectively.

- (a) (4%) Let $G_P = \frac{s+2}{(s+5)(s+20)}$, $G_C = 5$ and H(s) = 1. Solve the steady-state error for the two cases of input u being a unit step and unit ramp function.
- (b) (4%) Let $G_P = \frac{s+1}{s(s+5)(s+10)}$, $G_C = 5$ and H(s) = s. Solve the steady-state error for the two cases of input u being a unit step and unit ramp function.
- (c) (8%) Let $G_P = \frac{10}{(s+1)\cdot(s+50)}$ and the input u be a unit step. Obtain the settling time (for the definition of 2% error) for the open-loop system approximately. Consider H(s) = 1 and design a controller G_C to make the settling time be less than 0.1 second.
- 2. (26%) Consider the closed-loop feedback system as given in Figure 2 below.

Figure 2.

Let the system plant G_P be given in the form of $G_P = \frac{\prod_i (s + z_i)}{\prod_i (s + p_i)}$.

(a) (12%) Obtain G_p from Figure 3 and plot the root loci for $K \ge 0$. Find the angles of asymptotes, the breakaway and/or break-in points on the real axis. What will be the range of K for guaranteeing the asymptotically stability of the closed-loop system?

類組:<u>電機類</u> 科目:控制系統(300D)

※請在答案卷內作答

Figure 3.

(b) (14%) Obtain G_p from Figure 4 and plot the root loci for $K \ge 0$. Find the angles of asymptotes, the interception of asymptotes on the real axis and the breakaway and/or break-in points on the real axis. What will be the range of K for guaranteeing the asymptotically stability of the closed-loop system?

Figure 4.

- 3. (8%)
- (a) (4%) Derive the closed-loop transfer function of the system with respect to all inputs as depicted in Figure 5.
- (b) (4%) Derive the closed-loop transfer function of the system with respect to all inputs as depicted in Figure 6.

類組:<u>電機類</u> 科目:<u>控制系統(300D)</u>

※請在答案卷內作答

Figure 5.

Figure 6.

類組:<u>電機類</u> 科目:<u>控制系統(300D)</u>

※請在答案卷內作答

4. (34%) Consider the feedback system in Figure 7, where $G_p(s) = \frac{1}{s(s-1)}$ and the P controller $G_c(s) = K$.

Figure 7.

- (a) (8%) Sketch the Nyquist plot of the open-loop transfer function $G_c(s)G_p(s) = \frac{K}{s(s-1)}$ for K>0.
- (b) (4%) Determine the range of **K** for stability of the feedback system, where $-\infty < K < 0$.
- (c) (10%) To improve the stability, a PD controller is applied, that is, $G_c(s) = K(s+z)$, where z>0 and K>0. Sketch the Nyquist plot and find the range of K for stability. Find the asymptotes if available. Hint: $G_c(j\omega)G_p(j\omega) = \frac{-K\omega(z+1) + jK(z-\omega^2)}{\omega(\omega^2+1)}$.
- (d) (8%) Choose z=1 and design the control system to have the phase margin of 45°. Find the corresponding gain crossover frequency ω_g and the phase crossover frequency ω_p . What is the PD controller, i.e. K=?
- (e) (4%) What is the maximum allowable time delay in (d).
- 5. (16%) For a unity-feedback system with the open-loop transfer function L(s).
- (a) (8%) If $L(s) = \frac{K}{s^2}$, draw the Nyquist plot and magnitude-phase plot. Also determine its phase margin for K>0.
- (b) (8%) If $L(s) = \frac{K}{s^3}$, draw the Nyquist plot and magnitude-phase plot. Also determine its phase margin for K>0.