台灣聯合大學系統 104 學年度碩士班招生考試試題 共 4 頁 第 1 頁

類組: 電機類 科目: 電路學(3009)

※請在答案卷內作答

- Consider the three-phase system shown in the following figure. Two loads L_1 and L_2 are paralleled connected to a three-phase voltage source $V_A=100 \angle 0^{\circ}$, $V_B=100 \angle 120^{\circ}$, and $V_c=100 \angle -120^{\circ}$.
 - (-) Draw the single-phase equivalent circuit of the figure. (4%)
 - ($\vec{-}$) Determine the root-mean-square (RMS) voltage of $V_1(t)$ and the rms current of $i_2(t)$. (4%)
 - (Ξ) Find the instantaneous power generated by the voltage source V_A . (4%)
 - (四) Find the reactive power generated by the voltage source V_B . (4%)
 - (£) Will this circuit result in maximum average power transferred from the three-phase voltage source, V_A , V_B , and V_C , to these parallel loads L_1 and L_2 ? Please justify your answer. (4%)

- \equiv The terminal characteristics of a circuit N is as illustrated in the v_o - i_o plane. (15%)
 - (-) Calculate the load resistor R_{load} which results in maximum power consumption on itself while being connected across the output terminals. (5%)
 - (=) Can you estimate the total power consumption inside circuit N when R_{load} is connected across the output terminals (Yes/No)? If yes, please show your analysis; if no, please explain why. (10%)

類組: 電機類 科目: 電路學(3009)

※請在答案卷內作答

= You are to design a 3 bit digital-to-analog converter of the following specifications: (15%)

- Logic "0" is 0V; Logic "1" is 1V. The 3 bit digit is represented by X_0 (LSB), X_1 , and X_2 (MSB), respectively.
- At the output V₀, "000" should be converted to 0V, and "111" should be converted to +10V.

The following components are available:

- OPAMPs driven by +15V and -15V.
- Identical resistors of R ohm.

Unlimited numbers of OPAMPs and resistors are available, but you should use as few as possible.

- (-) Please draw the circuit diagram of your design and show the relationship between output V_0 and inputs X_0 , X_1 , and X_2 . (10%)
- (=) If you can choose either R=100 ohm or R=50k ohm to implement your circuit, which one would you choose? Explain why. (5%)

四、Given an RC circuit with initial condition of $V_c(0) = 5$ V and dc input voltage V_i , determine $V_c(t)$. (10%)

類組: 電機類 科目: 電路學(3009)

※請在答案卷內作答

 \mathcal{L} . Given an *RLC* circuit driven by a sinusoidal voltage source V_i , determine output voltage $V_o(t)$ in the sinusoidal steady state. (10%)

- 六、A buck-boost converter is shown below. Answer the following questions:
 - (-) What is the input-to-output voltage transfer ratio (V_o/V_i) when it operates in continuous conduction mode and with duty ratio d of switch S_I . (10%)
 - (\perp) What are the voltage stresses imposed on switch S_1 and diode D_1 . (5%)

類組: 電機類 科目: 電路學(3009)

※請在答案卷內作答

- $+\cdot$ A forward converter operated in continuous conduction mode and with duty ratio d of switch S_I is shown below, in which the numbers of turns of the windings are N_I , N_2 and N_3 . Answer the following questions:
 - (-) How to reset the core of the transformer in every switching cycle? (5%)
 - ($\stackrel{\frown}{}$) What is the voltage stress imposed on diode D_3 ? (5%)
 - (=) What is the maximum duty ratio limitation under normal operation? (5%)

