國立。清華大學命題紙

95 學年度 資訊系統與應用研究所 系 (所)	95 學年度	資訊系統與應用研究所	系(.	所)_	丙	_組碩士班/	、學考	·計
-------------------------	--------	------------	-----	-----	---	--------	-----	----

科目 機率與統計 科目代碼 2402 共 3 頁第 1 頁 *請在試卷【答案卷】內作答

- I. (15%) Suppose box I contains 2 white balls and 1 black ball, box II contains 1 white ball and 3 black balls, and box III contains 2 white balls and 2 black balls.
 - (a) (5%) One ball is selected from each box. Calculate the probability of getting all white balls.
 - (b) (5%) One box is selected at random and one ball is drawn from it. Calculate the probability that it will be white.
 - (c) (5%) In (b), calculate the probability that the first box was selected given that a white ball is drawn.
- II. (15%) Let X and Y be independent random variables each having the uniform density on $\{0,1,\dots,N\}$.
 - (a) (5%) Find $P(X \ge Y)$.
 - (b) (5%) Find P(X = Y).
 - (c) (5%) Find the density of min(X,Y).

國立清華大學命題紙

III. (10%) The joint probability density function for random variables X and Y is given by

$$f(x,y) = \begin{cases} cxy & 0 \le x \le 3, \ 0 \le y \le 2 \\ 0 & elsewhere \end{cases}$$

where c is a constant.

- (a) (5%) Determine the constant c so that it satisfies the property of joint probability density function.
- (b) (5%). Are the random variables X and Y dependent? Give the reason for your answer.

IV. (10%) Consider a continuous random variable X with a normal distribution given as follows:

$$f(x) = \frac{1}{2\sqrt{2\pi}}e^{-\frac{(x-1)^2}{8}}$$

- (a) (5%) Find a linear transformation on the random variable X to make the transformed random variable to have the standard normal distribution.
- (b) (5%) Compute the probability P(0 < X < 3). Write your answer in terms of the cumulative distribution function Φ of a standard normal random variable Z, i.e. $\Phi(z) = P(Z \le z)$.
- V. (15%) Assume each observation X_i , i=1, ..., 100, is randomly drawn from a population with a continuous uniform distribution in [0, 2].
 - (a) (5%) Compute the mean and variance for the sample mean \bar{X} .
 - (b) (5%) Give an approximate distribution for \bar{X} as best as you can. Explain your reason.
 - (c) (5%) Derive the probability that the sample mean value is larger than 1.2. You can write your answer in terms of some cumulative distribution function.

國立清華大學命題紙

VI.(35%) Answer the following questions.

- 1.(20%) Let X_1, X_2, \ldots, X_n be a random sample from b(1,p), thus $Y = \sum_{i=1}^n X_i \sim b(n,p)$.
 - (a) (5%) Show that $\overline{X} = Y/n$ is an unbiased estimator of p.
 - (b) (5%) Show that $Var(\overline{X}) = p(1-p)/n$.
 - (c) (5%) Show that $E[\overline{X}(1-\overline{X})] = \frac{n-1}{n}[p(1-p)].$
 - (d) (5%) Find the value c so that $c\overline{X}(1-\overline{X})$ is an unbiased estimator of $Var(\overline{X})$.
- 2.(8%) To test the equal likelihood of the six faces of a die, the die was cast 120 times with the results listed in the following table.

Face Value	1	2	3	4	5	6
Frequency	18	23	16	21	18	24

Let X_k have χ^2 distribution with the degree of freedom k, $k \ge 1$ and assume that $P(X_5 > 11.07) = 0.05$ and $P(X_6 > 12.59) = 0.05$. By applying a Pearson's χ^2 goodness-of-fit test, to see if this die is a fair die, what is the χ^2 statistic? how do you draw your conclusion?

3.(7%) Observe a set of n points $S_n = \{(x_i, y_i) | 1 \le i \le n\}$. A best line fit problem is to find α, β to minimize

$$f(\alpha, \beta) = \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

Given $S_3 = \{(0,1), (3,4), (5,6)\}$, find a best fitting line for S_3 and the corresponding \mathbb{R}^2 statistic.