國立清華大學命題紙

	95 学年度	資訊系統與應用	研究所		j	系 (P)T)			. 超領士班/	、字考試
科日	機塞論	科目代碼	2302	#	3	百第	1	百	*請在試券	【答案卷】	內作答

- I. (20%) A box contains 3 white balls and 2 black balls. Two balls are drawn from it without replacement.
 - (a) (5%) Calculate the probability that both balls drawn will be the same color.
 - (b) (5%) Calculate the probability that at least one of the balls drawn will be white.
 - (c) (5%) Calculate the probability that the second ball is black given that the first ball is black.
 - (d) (5%) Calculate the probability that the first ball is white given that the second ball is white.

- II. (15%) Let X and Y be independent random variables each having the uniform density on $\{0,1,\dots,N\}$.
 - (e) (5%) Find $P(X \ge Y)$.
 - (f) (5%) Find P(X = Y).
 - (g) (5%) Find the density of min(X,Y).

國立清華大學命題紙

III.(30%)

- 1. (10%) Denote $C_k^n = \frac{n!}{(n-k)!k!}$, $1 \le k \le n$ and define 0! = 1.
 - (a) (6%) Show that $C_k^n = C_k^{m-1} + C_{k-1}^{m-1}, \ \forall \ 1 \le k \le n$.
 - (b) (2%) Find $\sum_{k=0}^{n} C_{k}^{n}$.
 - (c) (2%) Find $\sum_{k=0}^{n} (-1)^k C_k^n$.
- 2.(10%) Let X be the number of accidents in a factory per week having the probability mass function

$$f(x) = \frac{1}{(x+1)(x+2)}, \quad x = 0, 1, 2, \dots,$$

Find the conditional probability $P(X \ge 4|X \ge 1)$.

3.(10%) The p.d.f. of X is $f(x) = \theta x^{\theta-1}$, 0 < x < 1, $0 < \theta < \infty$ and let $Y = -2\theta \ln(X)$. Name the distribution of Y and find the expectation E(Y) and variance Var(Y).

國立清華大學命題紙

IV. (10%) Consider two independent random variables X and Y satisfying the following equations:

$$E[(X+1)^2] = 9$$
, $E[(X-3)^2] = 1$
 $E[(Y-3)^2] = 24$, $E[(Y+2)^2] = 9$

- (a) (5%) Compute the means and variances of X and Y.
- (b) (5%) Compute the covariance between the random variables X+2Y and X-3Y.

V. (15%) The joint probability density function for random variables X and Y is given by

$$f(x,y) = \begin{cases} cxy & 0 \le x \le 3, \ 0 \le y \le 2 \\ 0 & elsewhere \end{cases}$$

where c is a constant.

- (a) (5%) Determine the constant c so that it satisfies the property of joint probability density function.
- (b) (5%) Compute the expectation E(X).
- (c) (5%) Are the random variables X and Y dependent? Give the reason for your answer.
- VI. (10%) Consider a continuous random variable X with a uniform distribution between 0 and 4.
 - (a) (5%) Compute the mean and variance of random variable X from their definitions. Show the step-by-step details of your computation.
 - (b) (5%) Compute the moment generating function for the random variable X.