國立清華大學命題紙

九十三學年度 賣應 系(所) 甲 組碩士班入學考試

科目 線性代數 科號 3103 共 4 頁第 / 頁 *請在試卷【答案卷】內作答

(30%) I. Fill in the blanks.

1. Let

$$L = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 3 & 1 \end{array} \right].$$

 $L^{-1}=$

2. Let $A_n = [a_{ij}] \in \mathbb{R}^{n \times n}$ for $n \ge 2$, where

$$a_{ij} = \begin{cases} 1 & if \ i = j \ or \ i = j+1 \\ -1 & if \ i = j-1 \\ 0 & otherwise \end{cases}$$

 $det(A_n)=$ _____

- 3. Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transform defined by $T([x,y,z]^t) = ([2x-y,y-2z]^t)$. The kernel of T, Ker(T) =_____
- 4. If B is an $m \times n$ matrix of rank n, then Null(B) =
- 5. Let $\mathbf{x} = [1, 1, 1, 1]^t$, $\mathbf{e}_1 = [1, 0, 0, 0]^t$, $\mathbf{u} = \mathbf{x} ||\mathbf{x}||_2 \mathbf{e}_1$, and define $H = I \frac{1}{2} \mathbf{u} \mathbf{u}^t$. $\det(H) = \underline{\hspace{1cm}}$

國立清華大學命題紙

九十三學年度 資應 系((所)	甲 組	L硕士班入學考試
--------------	-----	-----	----------

科目 線性代數 科號 3103 共 4 頁第 2 頁 *請在試卷【答案卷】內作答

(30%) II. Fill in the blanks.

1. Suppose

$$A = \left[\begin{array}{ccc} -1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} \right].$$

The dimension of the eigenspace corresponding to the eigenvalue $\lambda = 1$ is _____

2. Suppose

$$A = \left[\begin{array}{cc} -2 & -6 \\ 1 & 3 \end{array} \right].$$

Then, $(e^A)^{-1}$ is _____

3. Suppose

$$A = \left[\begin{array}{ccc} 4 & 0 & 0 \\ 0 & 1 & i \\ 0 & -i & 1 \end{array} \right].$$

If $B^H B = A$, then B is _____

- 4. Given the initial value problem: y''' = 2y'' + 3y' 2y, where y(0) = 3, y'(0) = 2, y''(0) = 6, the solution $y(t) = \underline{\hspace{1cm}}$
- 5. The least squares solution $\hat{\mathbf{x}}$ of the system $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 1 & 3 \\ -1 & 3 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \quad and \quad \mathbf{b} = \begin{bmatrix} -2 \\ 0 \\ 8 \end{bmatrix},$$

is ____

國 立 清 華 大 學 命 題 紙

九十三學年度<u>青應</u>系(所)<u>甲</u>組碩士班入學考試 科目<u>線性代數</u>科號<u>3103</u>共<u>4</u>頁第<u>3</u>頁 *請在試卷【答案卷】內作答

(20%) III. Mark () if the statement is true, and mark × otherwise.

- 1. Let \mathbf{w} , \mathbf{x} , \mathbf{y} , \mathbf{z} be the vectors in R^4 . If $\mathbf{w} \perp \mathbf{x}$ and $\mathbf{y} \perp \mathbf{z}$, then U is the orthogonal complement of V, namely, $U = V^{\perp}$, where $U = \mathrm{Span}(\mathbf{w}, \mathbf{y})$, and $V = \mathrm{Span}(\mathbf{x}, \mathbf{z})$.
- Suppose A ∈ R^{m×n} and B ∈ R^{n×r}. If C = AB, N(B)[⊥] is a subspace of N(C)[⊥].
- 3. If **u** and **v** are two vectors in an inner product space V, it is always true that $\|\mathbf{u} + \mathbf{v}\|_2^2 + \|\mathbf{u} \mathbf{v}\|_2^2 = 2\|\mathbf{u}\|_2^2 + 2\|\mathbf{v}\|_2^2$.
- Suppose A ∈ R^{m×n} and x̂ is a solution to the least squares problem Ax = b. If y = x̂ + z, for some z ∈ N(A^TA), then y is another solution.
- Suppose x is a unit vector ∈ Rⁿ. If H = I − 2xx^T, then H is an orthogonal matrix.
- 6. Suppose $A \in \mathbb{R}^{n \times n}$ and $A^2 = A$. If λ is an eigenvalue of A, then λ must be 1.
- Suppose A, B ∈ R^{n×n}. If x is the common eigenvector of A and B, then x must be an eigenvector of C = αA + βB, where α and β are two constants.
- Suppose A ∈ R^{n×n}. If the columns of A all add up to a fixed constant c, then c is an eigenvalue of A.
- Suppose A, B ∈ R^{n×n}. If λ is an eigenvalue of AB, then it is also an eigenvalue of BA.
- If the eigenvalues of the matrix A are not all distinct, then A is not diagonalizable.

九十三學年度 資應

科目<u>線性代數</u>科號<u>3103</u>共<u>4</u>頁第<u>4</u>頁

*請在試卷【答案卷】內作答

(20%) IV. Choose the best answer in the following questions.

- (a) Let V = {[a b, b c, 0]^t | a, b, c ∈ R} ⊂ R³, then dim(V[⊥]) =?
 (1) 0, (2) 1, (3) 2, (4) 3, (5) none.
- (b) Define E(a) = I − ae₃e₂^t ∈ R^{n×n}, if a ≠ 0, then the inverse matrix of E(a) is

 E(a⁻¹), (2) E(−a⁻¹), (3) E(a), (4) E(−a), (5) none.
- (c) Let A ∈ R^{m×n} have rank k and let CS(A) be the column space of A, then dim(Null(A))+ dim(CS(A)) =?
 - (1) m, (2) n, (3) m − k, (4) n − k, (5) none.
- (d) Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, the least squares solution of $A\mathbf{x} = \mathbf{b}$ is
 - (1) [1, 1]^t, (2) [-1, -1]^t, (3) [0, 1]^t, (4) [1, 0]^t, (5) none.
- (e) Let Q ∈ R^{n×n} be orthogonal, then det(Q) =?
 - (1) 1, (2) 1 or -1, (3) -1, (4) n, (5) none.
- (f) Let $A \in \mathbb{R}^{n \times n}$ have eigenvalues $0, 2, 4, \dots, 2(n-1)$. Then trace(A) = ? (1) n^2 , (2) n(n-1), (3) n(n+1), (4) n, (5) none.
- (g) Let V = Span([1, 1, 1]^t) ⊂ R³, then dim(V[⊥]) =?
 (1) 0, (2) 1, (3) 2, (4) 3, (5) none.
- (h) Let A ∈ R^{m×n} and b ∈ R^m, then the condition for Ax = b must have a solution in R^m is
 - (1) $m \ge n$, (2) m < n, (3) m = n, (4) $m \ne n$, (5) none.
- (i) Let L∈ R^{n×n} be a unit lower triangular matrix, what is det(L) + trace(L)?
 (1) 1, (2) n, (3) n+1, (4) n², (5) none.
- (j) Let A ∈ R^{m×n} have Null(A) = Span(e₁) and m > n, what is the rank of A?
 (1) n, (2) m, (3) n − 1, (4) m − 1, (5) none.