(25%) I. Fill in the blanks.

1.

$$det \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 6 & 2 & 0 \\ 1 & 1 & -2 & 3 \end{pmatrix} = \underline{\hspace{1cm}}$$

2. Let

$$A = \left(\begin{array}{ccc} 1 & 4 & 3 \\ -1 & -2 & 0 \\ 2 & 2 & 3 \end{array}\right). \qquad A^{-1} = \underline{\qquad}$$

- 3. The angle between $x = [1, 1, 1, 1]^T$ and $y = [8, 2, 2, 0]^T$ is ______.
- 4. If A is an $m \times n$ matrix of rank r, then $dim(N(A^T)) = \underline{\hspace{1cm}}$.
- 5. Let

$$A = \left(\begin{array}{ccc} 2 & -3 & 1 \\ 1 & -2 & 1 \\ 1 & -3 & 2 \end{array}\right).$$

The dimension of the eigenspace corresponding to the eigenvalue $\lambda = 1$ is ______.

(25%) II. Fill in the blanks.

- 1. Let $V = span([1,0,1]^t) \subset \mathbb{R}^3$, then $V^{\perp} = \underline{\hspace{1cm}}$
- 2. Let $\mathbf{x} = [2, 4, ..., 2n]^t$, then $||\mathbf{x}||_1 =$ _____
- 3. Let $\mathbf{v} = [1, 1, 1]^t$ and $\mathbf{b} = [2, 4, 6]^t$, then the projection of \mathbf{b} onto the line \mathbf{v} is
- 4. Let

$$B = \begin{bmatrix} -3 & 2 & 0 \\ 2 & -3 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

The eigenvalues of B^{-1} are _____

5. Let $L: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transform defined as $L([a,b,c]^t) = [0,0,b+c]^t$, then $dim(Ker(L)) = \underline{\hspace{1cm}}$

國 立 清 華 大 學 命 題 紙

(20%) III. Mark () if the statement is true, and mark × otherwise.

- 1. If S and T are subspaces of a vector space V, then $S \cup T$ is a subspace of V.
- 2. If x is a nonzero vector in \mathbb{R}^n and $A\mathbf{x} = \mathbf{0}$, then $det(A) = \mathbf{0}$.
- 3. Let $E = [x_1, x_2, \ldots, x_n]$ be an ordered basis for \mathbb{R}^n . If $L_1 : \mathbb{R}^n \to \mathbb{R}^n$ and $L_2 : \mathbb{R}^n \to \mathbb{R}^n$ have the same matrix representation with respect to E, then $L_1 = L_2$.
- 4. If U, V, and W are subspaces of R^3 , then $U \perp V$ and $V \perp W$ imply $U \perp W$.
- 5. If A is an $n \times n$ matrix, then A and A^T have the same eigenvalues.
- 6. A basis of a vector space is an orthogonal set.
- 7. Let A be an $n \times n$ real matrix, then A has rank n^2 .
- 8. An orthogonal set of vectors in a vector space are linearly independent.
- 9. Every diagonally dominant real matrix is positive definite.
- 10. Every real symmetric matrix can be diagonalized.

(30%) IV. Choose the best answer in the following questions.

- 1. α is a scalar and A, B, and C are matrices for which the indicated matrix operations are defined. Which on the following statements is false?
 - (a) A(B+C) = AB + AC
 - (b) $\alpha(AB) = A(\alpha B)$
 - (c) $(A+B)^2 = A^2 + 2AB + B^2$
 - (d) $(AB)^{-1} = B^{-1}A^{-1}$
 - (e) all of the above
- 2. Which one of the following statement is not equivalent to the rest for an $n \times n$ matrix A?
 - (a) A is nonsingular
 - (b) Ax = 0 has only the trivial solution
 - (c) A is row equivalent to the identity matrix
 - (d) $det(A) \neq 0$

國 立 清 華 大 學 命 題 紙

- (e) The row vectors of A form a basis for \mathbb{R}^n .
- 3. Given

$$A = \left(\begin{array}{cccc} 4 & 1 & 2 & 1 \\ 5 & 2 & 4 & 2 \\ 2 & 4 & 3 & 4 \\ 1 & 3 & 2 & 3 \end{array}\right)$$

Which is det(A)?

- (a) -4
- (b) 0
- (c) 8
- (d) 16
- (c) none of the above
- 4. Let P_n denote the set of polynomials of degree less than n. Which of the following is a subspace of P_4 ?
 - (a) The set of polynomials in P_4 of even degree
 - (b) The set of polynomials in P_4 of degree 3
 - (c) The set of polynomials in P_4 such that P(0) = 0
 - (d) The set of polynomials in P_4 having at least one real root
 - (e) none of the above
- 5. Which one of the following statement is false?
 - (a) Ax = b is consistent if and only if B is in the column space of A.
 - (b) The rank of A plus the nullity of A equals m, where A is an $m \times n$ matrix.
 - (c) The dimension of the row space of A equals the dimension of the column space of A.
 - (d) The null space of A equals the orthogonal complement of $R(A^T)$.
 - (e) The intersection of two orthogonal subspaces is the zero vector.
- 6. Let $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ be orthonormal vectors, then $||3\mathbf{u} + 4\mathbf{v}||_2 = ?$
 - (a) 5
 - (b) 7
 - (c) 5n
 - (d) 7n
 - (e) none of the above

		•	, ,	•		
	九十二學年度				組碩士班研究生招生	
科目_	線性代數	科號_2803	共 4 _頁第	4 頁	*請在試卷【答案	卷】內作答
	7. Let $Q \in \mathbb{R}^{n \times n}$ be orthogonal, then $ Q _2^2 = ?$					

- (a) 0
- (b) 1
- (c) 2
- (d) n
- (e) n^2
- 8. Let $A \in \mathbb{R}^{n \times n}$ have eigenvalues $2, 4, \dots, 2n$, then tr(A) = ?
 - (a) n
 - (b) n^2
 - (c) n(n+1)
 - (d) n(n-1)
 - (e) none of the above
- 9. Let $A \in \mathbb{R}^{m \times n}$ have rank r, then dim(Null(A)) + dim(R(A)) = ?
 - (a) m-r
 - (b) n-r
 - (c) m
 - (d) n
 - (e) none of the above
- 10. Let $A \in \mathbb{R}^{3\times 3}$ have eigenvalues $\lambda(A) = \{1, 2, 5\}$, then $\lambda(A^{-1}) = ?$
 - (a) $\{0,1,4\}$
 - (b) $\{-1,-2,-5\}$
 - (c) $\{1,8,125\}$
 - (d) $\{-1,-0.2,-0.5\}$
 - (e) $\{1,0.2,0.5\}$