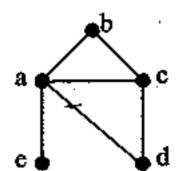

- 1. (15%) (a) (5%) Let A be a square matrix. Show that A and  $A^T$  have the same eigenvalues.
  - (b) (5%) Find the eigenvalues and the corresponding eigenvectors of the matrix A:


$$A = \begin{pmatrix} 2 & -1 \\ 4 & -3 \end{pmatrix}.$$

(c) (5%) Solve the initial value problem:

$$\begin{cases} y_1' = 2y_1 + 4y_2 \\ y_2' = -y_1 - 3y_2 \end{cases}, \quad y_1(0) = 2, y_2(0) = 1.$$

- (8 %) A box contains four balls numbered 1 through 4. The balls are selected one at a time without replacement. A match occurs if the ball numbered k is the k-th ball selected. Let the event  $A_i$  denote a match on the i-th draw, i=1, 2, 3, 4.
  - (a) (3%) Find the probability  $P(A_i \cap A_j)$  where  $1 \le i < j \le 4$
  - (b) (5%) Find the probability  $P(A_1 \cup A_2 \cup A_3 \cup A_4)$
- (7%) Give a tree representation and evaluate the value of the prefix expression +-\*235/\*236
- 4. (5 %) Are the following two graphs isomorphic? Give reasons for your answer.





- (10 %) Assume that there are n numbers in which every number is larger than 0 and less than 10000\*n. Please design a fastest sorting algorithm to sort this nnumbers. What is the time complexity of this fastest sorting algorithm in big-O notation?
- 6. (8%) How can you find the left and the right child of a node in an array (without left and right child links) representing a binary tree?
- 7. (8 %) Specify the operations step by step to delete a node (denoted by the variable x) in a doubly linked circular list? Suppose that each node x is represented by three arrays: DATA[x], LLINK[x] and RLINK[x]. (To simply your answer, you may assume that the node to be deleted is in the middle of the list and there are at least three nodes in the list .)

## 九十學年度 資訊 2程學 系(所)

## 

- 8. (10%) How fast can we find the minimum weighted spanning tree for a graph with n vertices and with each edge weight being  $n^2$ ? What algorithm should we use?
- (5%) Using the error-correcting code represented in Table 1.below to decode the following message: 001011 100100 001100

|          | Table 1 |
|----------|---------|
| symbol   | code    |
| A        | 000000  |
| B<br>C   | 001111  |
| <u>c</u> | 010011  |
| D_       | 011100  |
| E<br>F   | 100110  |
| <u>F</u> | 101001  |
| G        | 110101  |
| H        | 111010  |

10. (8 %) A floating-point number in terms of an 8-bit byte representation consists of 3 fields: a sign bit field, a 3-bit exponent field in excess-3 notation, and a 4-bit mantissa field. What real number does the floating-point number 10111010 represent?

11. (6%) In terms of the following relations X and Y in relation database, what is the appearance of the relation RESULT after executing the instruction:

RESULT  $\leftarrow$  JOIN X and Y where X.W.  $\geq$  Y.R

| w  | 1               |   |
|----|-----------------|---|
| X. | relation        | ì |
|    | <b>TOTAL DE</b> | L |

| Ü  | v_ | W |
|----|----|---|
| 14 | Z  | 5 |
| B  | D  | 3 |
| C  | Q  | 5 |
|    | -  |   |

Y-relation

| R | S |
|---|---|
| 3 | Ţ |
| 4 | K |
|   |   |

## 12 (59/) Company the following

- 12. (5%) Suppose the following solutions have been proposed for removing the deadlock that occurs on a single-lane bridge when two cars meet. Identify which condition(s) for the deadlock given in the text is removed by each solution.

  a. Do not let a car onto the bridge until the bridge is empty
- b. If cars meet, make one of them back up.
- c. Add a second lane to the bridge

Link Layer 5) Physical Layer

13. (5%) Which of the following layers in the network communication TCP/IP protocol divides an original message into packets of smaller size and attaches each packet with an address?: 1) Application Layer 2) Transport Layer 3) Network Layer 4)