八十四學年度<u>資訊科學研究</u>組碩士班研究生入學者試 科目 計算 科 等 論 科 報 080 2 共 五 頁第 一 頁 * 讀在試卷 [答案卷] 內作答

 (10%) Let m and n be two positive integers. Consider the following function MAZE.

```
procedure MAZE(m, n:integer);
var
temp, result: integer;
begin
temp:=m;
result:=0;
while n<>0 do
begin
if (n mod 2)=1 then result:=result+temp;
temp:=temp+temp;
n:=n div 2;
end;
writeln(result);
end;
```

- (1) What will be outputted if we perform the following procedure call MAZE(12, 11)? (3%)
- (2) What's the purpose of the above procedure? (3%)
- (3) What's the time complexity (in big-O notation with respective to m and n) of the above procedure? (4%)
- (5%) This problem is to test your understanding of dynamic programming. Consider the following multistage graph. Show how to find the shortest path from the node S to the node T by dynamic programming (step by step).

八十四學年度 資訊 計學研究所 組碩士班研究生入學考試 科目 計算機學論 科號 0802 共五 頁第二 頁 *讀在試養【答案卷】內作答

(10%) Consider the following recursive procedure RECUR.

```
procedure RECUR(n:integer);
begin
if n<=1 then write(n:4)
else begin
RECUR(n div. 2);
write(n:4);
RECUR(n div. 3);
end;
end;
```

- (1) What will be outputted if we perform the following procedure call RECUR(13)? (6%)
- (2) What's the time complexity (in big-O notation with respective to n) of the above procedure? (4%)
- 4. (6%) Please answer the following questions briefly:
 - (a) We can use NAND gates only to implement all Boolean functions. Why? (2%)
 - (b) Is 'don't care' helpful in a K-map? Why? (2%)
 - (c) What is the DeMorgan's rule? Please give an example to show how DeMorgan's rule works. (2%)

國 立 清 華 大 學 命 題 紙

八十四學年度 資訊、科學研究所 組碩士班研究生入學考試 科目 訂算機 導 論 科號 0802 共 五 頁第 三 頁 *請在試卷【答案卷】內作答

- 5. (6%) What is the difference between:
 - (a) PLAs (programmable logic arrays) and PAL (Programmable array logic). (2%)
 - (b) One's complement and Two's complement. (2%)
 - (c) DRAM (dynamic random-access memory) and SRAM (static random-access memory). (2%)
- 6. (10%) Please use minimum number of NAND gates (only) to implement an XOR gate. (4%) Please prove that the number of gates in your circuit is minimum. (6%)
- 7. (10%) Show how to implement a positive edge-triggered D flip-flop using two SR latches and some additional gates.
- (10%) Assume each integer takes 1 unit of memory to store.
 Consider the array declaration

Var A: array[1..5, 20..25, 10..15] of integer,

and this array is stored in row major order. Answer the following questions:

- (1) How many spaces it takes to store array A? (2%)
- (2) If A[1, 20, 10] is stored at address 2000, what is the location of A[3, 20, 15]? (4%)
- (3) If A[1, 20, 10] is stored at address 2000, what is the array element at the location 2050? (4%)

八十四學年度 資訊 科學 3 所 組碩士班研究生入學 考試 科目 《打算 核等 海 科號 080 & 共 五 買第 四 頁 *讀在試卷 [答案卷] 內作答

9. (12%) Given a set T of n values, we define m to be the majority of T if and only if m is in T and the number of values, which are equal to m, is larger than n/2. For example, 4 is the majority of the set { 1, 4, 3, 4, 2, 4, 4, 4 }. And the majority of the set { 3, 4, 3, 4, 3, 4, 3, 4 } does not exist.

Given a set T of n values, we define k to be the medium of T if and only if k is in T and

the number of values, which are smaller than k, is less than n/2 and the number of values, which are smaller than or equal to k, is larger than or equal to n/2.

- (1) Prove the majority (if it exists) should be the medium. (5%)
- (2) Briefly explain an algorithm which can find the majority in linear time. (3%)
- (3) Briefly explain a data structure that stores values in linear spaces and supports the following two operations:
 - (a) Find the majority of the stored values in constant time.
 - (b) Insert an arbitrary value in log n time. (4%)

Notice that you should verify your designs to satisfy the time complexity requirements.

10. (15%) The Tower of Hanoi game is to place n circular rings of varying size 1 to n on three pegs A, B and C. Every step you are allowed to move one ring from one peg to the other and at any time, any ring of size i must not be placed on top of the other ring of size j if i > j. Initially, all rings are placed in peg A and the problem is to find the optimal number of steps that can move the n rings in peg A as shown in the following figure to peg C.

Tower of Hanoi game

- (a) (3%) The optimal number of steps to move from peg A to peg C for n=3 is 7. What is the optimal number of moves for n=6?
- (b) (4%) If the optimal number of steps for moving n-1 rings from peg A to peg C is a_{n-1} what is the recurrent relation of a_n in terms of a_{n-1} ?
- (c) (4%) Prove that the a_n you find is indeed the optimal number of steps required to move n rings from peg A to peg C.
- (d) (4%) What is the exact function for a_n in terms of n?
- 11. (6%) Suppose we remove a upper left corner square and a lower right corner square of a checkerboard of 6x6 squares to become a 6x6-2 checkerboard as shown in Fig. 11-a. Now we want to exactly cover this modified checkerboard with 17 dominoes of two adjacent squares as shown in Fig. 11-b. Can we do it or not? Explain why?

Fig. 11- a A 6x6-2 checkerboard

Fig. 11-b. A domino