國立清華大學命題紙

1. (5%) Using mathematical induction, prove that for all n > 0

$$\sum_{i=0}^{n} ((i+2) \times 2^{i})) = (n+1) \times 2^{i+1}$$

2. (3%) (a) Let A, B, C be three subsets of a universe U. Represent on a Venn diagram the set:

$$(A \cup B \cup C) \cap \overline{(A \cap B \cap C)}$$

- (3%) (b) In a group of n boxes, 10 are red, 5 are square, and 12 are square or red (or both). How many boxes are square but not red?
- 3. (4%) How many isomorphic unrooted trees are there with five vertices.
- 4. (20%) Consider a cycle of length n with vertices $v_1, v_2, \dots v_n \cdot v_i$ is adjacent to v_{i+1} for $1 \le i \le n-1$ and v_n is adjacent to v_i . We would like to assign one of v_i colors to each vertex in the cycle such that adjacent vertices get different colors. Find the number of ways of doing this (as a function of v_i).
- 5. The 26 letters A,B,C...,Z are used to form strings of length n (n is some given positive integer.
 - (a) (5%) how many strings containing the letter A can be formed?
 - (b) (5%) how many strings can be formed if we do not allow repetitions?
 - (c) (5%) how many strings sorted in alphabetical order can be formed (repetitions allowed)?
- 6. (10%) Demonstrate the insertion of the keys 5, 28, 19, 15, 20, 33, 12, 17, 10 into a hash table with collisions resolved by chaining. Let the table have 9 slots, and let the hash function be $h(k) = k \mod 9$.

國立清華大學命題紙

科目____基礎計算機科學___科目代碼__2002__共_____ 頁第_____ 頁 *請在【答案卷卡】內作答

- 7. (10%) Suppose that we have numbers between 1 and 1000 in a binary search tree and want to search for the number 363. Which of the following sequences could *not* be the sequence of nodes examined? Please explain your answer.
 - a 2, 252, 401, 398, 330, 344, 397, 363.
 - b 924, 220, 911, 244, 898, 258, 362, 363.
 - c 925, 202, 911, 240, 912, 245, 363.
 - d 2, 399, 387, 219, 266, 382, 381, 278, 363.
 - e 935, 278, 347, 621, 299, 392, 358, 363.
- 8. (10%) The *incidence matrix* of a directed graph G = (V, E) is a $|V| \times |E|$ matrix $B=(b_{ij})$ such that

$$b_{ij} = \begin{cases} -1 & \text{if edge } j \text{ leaves vertex } i, \\ 1 & \text{if edge } j \text{ enters vertex } i, \\ 0 & \text{otherwise.} \end{cases}$$

Describe what the entries of the matrix product BB^T represent, where B^T is the transpose of B.

9. (10%) Dijkstra's algorithm for the single-source shortest-paths problem is as follows.

Dijkstra(G, w, s)

- 1 Initialize-Single-Source(*G*,*s*)
- $2 S \leftarrow 0$
- $3 \quad Q \leftarrow V[G]$
- 4 while $Q \neq 0$
- 5 **do** $u \leftarrow \text{Extract-Min}(Q)$
- 6 $S \leftarrow S \cup \{u\}$

國立清華大學命題紙 96學年度<u>通訊工程研究系(所)</u>乙<u>組碩士班入學考試</u> 科目<u>基礎計算機科學科目代碼 2002 共</u>頁第<u>)頁 *請在【答案卷卡】內作答</u>

for each vertex v in Adj[u]

8 **do** Relax(u,v,w)

Suppose we change line 4 of Dijkstra's algorithm to the following.

4 **while** |Q| > 1

This change causes the **while** loop to execute |V|-1 times instead of |V| times. Is this proposed algorithm correct? Please explain your answer.

10. (10%) Draw a picture of the sequence <13, 4, 8, 19, 5, 11> stored as a doubly linked list using the single-array representation and multiple-array representation, respectively.