

Figure A. Baseband data transmission system

The incoming binary system sequence $\{b_k\}$ consists of symbols 1 and 0, each of duration $T_b = 0.5\mu s$. The PAM modifies $\{b_k\}$ into $\{a_k\}$, where

$$a_k = \begin{cases} +1, & \text{if } b_k = 1\\ -1, & \text{if } b_k = 0 \end{cases}$$

The receiver filter output is

$$y(t) = \sum_{k} a_k p(t - kT_b) + n(t)$$

	國	立	清	華	大	學	命	題	紙	
	95 學年度	夏電機	領域聯合	招生	系(所)_	****	组码	士班入學	墨考試	
科目_	通訊	系統	科目	代碼_99	09_共_4	— 頁第_	<u>2_頁*</u>	請在【答	案卷卡】	內作答
	wher	re								
p(t) = g(t) * h(t) * c(t)										
(Hint: The Fourier series transform pair: $\sum_{k=-\infty}^{\infty} p(t-kT_b) \longleftrightarrow \frac{1}{T_b} \sum_{n=-\infty}^{\infty} P\left(f - \frac{n}{T_b}\right)$)										

- (a) Please derive and find the condition such that the decision device input $y(t_i)$ is ISI (inter-symbol-interference) free. (10%)
- (b) Let the frequency response of p(t) be in the form of a rectangular function. Please find the highest frequency component of P(f). (5%)
- 3. (20%) A random process defined by

$$X(t) = A(t)\cos(2\pi f_c t + \Theta),$$

is applied to an integrator producing the output

$$Y(t) = \int_{t-T}^{t} X(\tau) d\tau$$

(a) Suppose that f_c is a constant, A(t) is a wide-sense stationary random process independent of Θ, and Θ is a random variable uniformly distributed in [0, 2π]. We denote the power spectral density of A(t) by S_A(f). Show that the power spectral density S_Y(t) of Y(t) is given by

$$S_Y(f) = \frac{1}{4} [S_A(f - f_c) + S_A(f + f_c)] T^2 \operatorname{sinc}^2(Tf)$$

(8%)

- (b) Suppose that f_c is a constant, A(t) = A, where A is a Gaussian distributed random variable of zero mean and variance σ²_A, and Θ = 0. Determine the probability density function of the output Y(t) at a particular time t_k. (4%)
- (c) Based on the assumption in (b), is Y(t) stationary? Give your reason. (4%)
- (d) Based on the assumption in (b), is Y(t) ergodic? Give your reason. (4%)
- 4. (15%) In a binary antipodal signalling scheme, the signals are given by

$$s_{1}(t) = -s_{2}(t) = \begin{cases} 2At/T, & 0 \le t \le T/2\\ 2A(1-t/T), & T/2 \le t \le T\\ 0, & \text{otherwise} \end{cases}$$

The channel is AWGN, and its power spectral density is $N_0/2$. The two signals $s_1(t)$ and $s_2(t)$ have prior probabilities p_1 and $p_2 = 1 - p_1$, respectively.

	國	立	清	華	大	學	命	題	紙	
	95 學年度	E	幾領域聯合	合招生	_系(所)		組石	項士班入 县	學考試	
科目	通訊	系統	科目	目代碼	9909_ 共_	4_頁第_	3_頁	*請在【答	案卷卡】	内作答
	(a)) What	is the imp	pulse resp	ponse of the	e matched	filter? (2	%)		
	(b) Given the m	that $s_1(t)$ atched fil) was ser ter? (4%	nt, what is	the proba	bility dens	sity function	on of the	output of
	(c)) Let th in ter	e threshol ms of λ . (ld of the (4%)	decision de	vice be λ	Express	the averag	ge error p	robability
	(d) What	is the opt	imal valu	te of λ yield	ing the mi	nimum av	erage erro	r probabil	ity? (5%)
5. (20%) In this problem, we consider the Alamouti code used for multi-input and output (MIMO) fading channels. Two transmit antennas and one receive antenic considered in this problem. Let us assume an <i>M</i> -ary (<i>M</i> -PSK or <i>M</i> -QAM) mode scheme is used. In the Alamouti encoder, each group of <i>m</i> information bits is modulated, where $m = \log_2 M$. Then, the encoder takes a block of two mode symbols x_1 and x_2 in each encoding operation and maps them to the transmit anten A codeword transmits across two consecutive symbol transmission periods. Let us the transmit sequences from antennas one and two are given by $\mathbf{x}^1 = [x_1, -x_1, -x_2] = [x_2, x_1^*]$, respectively, where $*$ denotes the complex conjugate operation.								nd multi- tenna are odulation ts is first nodulated antennas. us denote $-x_2^*$] and		
	(a) Show (1%)	that the	transmit	sequences	from the	two trans	mit anteni	n <mark>as</mark> are or	thogonal.
	(b	(1.17) Let the fading coefficients from antennas one and two be h_1 and h_2 , respectively. Assume these fading coefficients are constant across two consecutive symbol mission periods. At the receive antenna, the received signal over two conservatives symbol periods, denoted by r_1 and r_2 , can be expressed as $r_1 = h_1x_1 + h_2x$ $r_2 = h_2x_1^* - h_1x_2^* + n_2$, where n_1 and n_2 are independent complex Gaussian revealed with zero mean and power spectral density $N_0/2$ per dimension, senting the additive white Gaussian noise. For $i = 1, 2$, write $n_i = n_{i,x} - where n_{i,x}$ and $n_{i,y}$ are independent real Gaussian random variables with zero and variance σ^2 and $j = \sqrt{-1}$. Assume that the channel fading coefficient and h_2 , can be perfectly recovered at the receiver. Then, the decoder chapair of signal $[\hat{x}_1, \hat{x}_2]$ from the signal constellation to minimize the distance $ r_1 - (h_1\hat{x}_1 + h_2\hat{x}_2) ^2 + r_2 - (h_2\hat{x}_1^* - h_1\hat{x}_2^*) ^2$ over all possible $[\hat{x}_1, \hat{x}_2]$. Show the decision rule becomes $\hat{x}_1 = \arg \min_{\hat{x}_1 \in S}(h_1 ^2 + h_2 ^2 - 1) \hat{x}_1 ^2 + d^2(\tilde{x}_1, \hat{x}_1)$ $\hat{x}_2 = \arg \min_{\hat{x}_2 \in S}(h_1 ^2 + h_2 ^2 - 1) \hat{x}_2 ^2 + d^2(\tilde{x}_1, \hat{x}_1) = \tilde{x}_i - \hat{x}_i ^2, i = 1, 2, \text{ and } n_i$ set of all possible modulated signal points in an <i>M</i> -ary signal constellation.								pectively. bol trans- onsecutive $k_2x_2 + n_1$; n random on, repre- $x + jn_{i,y}$, zero mean icients h_1 chooses a ice metric v that the nd S is the n. (10%)
	(c) Show $\hat{x}_1 =$ $\hat{x}_2 =$ if M -	that the c arg min _{\hat{x}} , arg min _{\hat{x}} , PSK cons	decision n $a \in S d^2(\tilde{x}_1, \tilde{x}_2)$ $a \in S d^2(\tilde{x}_2, \tilde{x}_2)$ $a \in S d^2(\tilde{x}_2, \tilde{x}_2)$	rule in (b) \hat{x}_1 , \hat{x}_1) , \hat{x}_2), s are used.	ecomes (1%)				

	國	立	清	華	大	學	命	題	紙	
	95 學年度	電機令	頁域聯合指	召生系	(所)		组碩-	上班入學之	考試	
科目	通訊系	統	_ 科目化	光碼_9909	<u><u>)</u> <u>+</u> <u>4</u></u>	_頁第_4	頁 <u>*請</u>	在【答案	卷卡】	內作答
	(d)	Show the	at the dec	oder used	in (b) is a	a maximu	m likeliho	od decode	r. (8%)	

- 6. (10%) In this problem, we consider differential PSK (DPSK). Let m(k) be a message data stream, where k is the sample time index. Let the sequence of encoded bits, c(k), be encoded by using the following way: $c(k) = \overline{c(k-1) \oplus m(k)}$, where the symbol \oplus represents modulo-2 addition and the overbar denotes complement.
 - (a) Show that the first bit of the code bit sequence, c(k = 0), can be chosen arbitrarily without affecting the detected message sequence at receiver. (1%)
 - (b) Please draw the block diagrams for DPSK transmitter and DPSK receiver. (3%)
 - (c) Please describe the decision rules in your DPSK receiver. Please also give the reasons of choosing such decision rules. (6%)