九十三學年度 通訊工程研究所 系 (所) 組碩士班入學考試 科目 工程製學 科號 3402共 3 頁第 1 頁 *請在試卷【答案卷】內作答 - (15%) For the following three questions, please find the true statements. (Proofs are not needed and no partial credits will be given for each question.) - (I) (5%) If v₁, v₂,..., v_n are elements of a vector space V and W is a subset of V. - (A). W forms a subspace of V. - (B). If v_1, v_2, \dots, v_n are linearly dependent, then each v_i , where $1 \le i \le n$, can be expressed as a linear combination of the rest (n-1) vectors. - (C). If \(\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\) span \(V\), then \(\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\) is a minimal spanning set if and only if \(\boldsymbol{v}_1, \boldsymbol{v}_2, \ldots, \boldsymbol{v}_n\) are linearly independent. - (D). If av₁ = bv₁, then a = b, where a and b are both scalars. - (E). If v_1, v_2, \dots, v_n form a basis of V, and W is a subspace of V, we may find a set of basis vectors of W from v_1, v_2, \dots, v_n . - (II) (5%) Let A and B be two $n \times n$ matrices and x be an $n \times 1$ column vector. - (A). If A and B are both diagonalizable, then A and B commute. - (B). If A is diagonalizable, then A has at least one eigenvalue. - (C). If λ is an eigenvalue of A, (A λI)x = 0 has only trivial solutions. - (D). If A is symmetric, it has real eigenvalues and is diagonalizable. - (E). If A and B are both nonsingular, there exists a unique inverse matrix of AB. - (III) (5%) Let L₁ and L₂ be linear transformations from R² into R², where R is the set of real numbers. - (A). If $L_1(\mathbf{x}_1) = L_1(\mathbf{x}_2)$, then vectors \mathbf{x}_1 and \mathbf{x}_2 must be equal. - (B). If x ∈ ker(L₁), where ker(L₁) is the kernel of L₁, then L₁(x + v) = L₁(v) for all v ∈ R². - (C). If L₁ + L₂ is the mapping described by (L₁ + L₂)(v) = L₁(v) + L₂(v) for all v ∈ R², then L₁ + L₂ is also a linear transformation. - (D). If L₁ rotates each vector by 60° and then reflects the resulting vector about the x-axis and L₂ also does the same two operations but in the reverse order, then L₁ = L₂. - (E). Let A be the standard matrix representation of L₁. If L²₁ is defined by L²₁(x) = L₁(L₁(x)) for all x ∈ R², then L²₁ is a linear transformation and its standard matrix representation is A². 九十三學年度___通訊工程研究所___系(所)____组碩士班入學考試 科目___工程學學 科號 3402共 3 頁第 2 頁 *請在試卷【答案卷】內作答 2. (20%) Consider a matrix $$A = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{array} \right].$$ - (a) (4%) Find the determinant of A. - (b) (4%) Find the rank of A. - (c) (4%) Determine a basis for the column space of A^T. - (d) (4%) Determine a basis for the nullspace of A. - (e) (4%) Find eigenvalues of A. - 3. (15%) If an n × n matrix A has fewer than n linearly independent eigenvectors, we say that A is defective. For each of the following matrices, find all possible values of the scalar α that make the matrix defective or show that no such values exist. (a) (5%) $$\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & \alpha \end{array} \right]$$ (b) (5%) $$\begin{bmatrix} 1 & 2 & 0 \\ 2 & 1 & 0 \\ 2 & -1 & \alpha \end{bmatrix}$$ (c) (5%) $$\begin{bmatrix} 4 & 6 & -2 \\ -1 & -1 & 1 \\ 0 & 0 & \alpha \end{bmatrix}$$ (30%) The joint probability density function of random variables of X and Y is given by $$f(x,y) = \frac{1}{2\pi} \exp[-(x^2 - \sqrt{3}xy + y^2)], \quad -\infty < x < \infty, -\infty < y < \infty.$$ - (a) (5%) Find the marginal probability density function of X. - (b) (5%) Find the conditional mean of Y, given that X = x. - (c) (5%) Find the conditional variance of Y, given that X = x. - (d) (5%) Find the joint moment-generating function of of X and Y given by $$M_{X,Y}(t_1, t_2) = E[\exp(t_1X + t_2Y)].$$ (e) (10%) Show that X + Y and X - Y are independent random variables. ## 國立清華大學命題紙 九十三學年度<u>通訊工程研究所</u>系(所)_____組碩士班入學考試 科目___工程整理 科號 3402 共 3 頁第 3 頁 *請在試卷【答案卷】內作答 (10%) Let X₁, X₂,... be a sequence of independent and exponentially distributed random variables with mean 1. Find E[N] when $$N = \max \left\{ n : \sum_{i=1}^n X_i \le 1 \right\}.$$ (If $\{n : \sum_{i=1}^{n} X_i \leq 1\}$ is an empty set, then N = 0.) Note that the probability density function of an exponential random variable X with parameter λ is given by $$f(x) = \lambda e^{-\lambda x}, \quad x \ge 0.$$ (10%) Let X₀, X₁, X₂,... be a sequence of independent Poisson random variables with mean 1. Let Y_n = X₀ + X_n for all n and S_n = ∑_{i=1}ⁿ Y_i. Find $$\lim_{n\to\infty} P\left(\left|\frac{S_n}{n}-1\right|<\frac{1}{4}\right).$$ Note that the probability mass function of a Poisson random variable X with parameter λ is given by $$P(X = i) = \frac{e^{-\lambda}\lambda^{i}}{i!}, \quad i = 0, 1, 2,$$