## 國 立 淸 華 大 學 命 題 紙

・ 世報を発送を表現します。
 ・ 大十一學年度 通訊工程研究所 単 組碩士班研究生招生考試 また。
 ○ 本語在試卷【答案卷】內作答

科目 通訊系統 科號 3002 共 3 頁第 / 頁 \*請在試卷【答案卷】內作答

 Consider a communication system where three equiprobable messages m<sub>1</sub>, m<sub>2</sub>, and m<sub>3</sub> are transmitted. Let m<sub>1</sub>, m<sub>2</sub>, and m<sub>3</sub> be encoded by signals s<sub>1</sub>(t), s<sub>2</sub>(t), and s<sub>3</sub>(t), respectively, given by

$$s_1(t) = 3\sqrt{2}\cos 2\pi t$$
  

$$s_2(t) = 2\sqrt{2}\sin 2\pi t$$
  

$$s_1(t) = -2\sqrt{2}\sin 2\pi t$$

where the signal duration is  $0 \le t \le 1$  and each signal is zero outside this interval. Assume that the signals are transmitted over an additive white Gaussian noise channel.

- (a) Find a set of orthonormal basis functions to represent the set of signals, and then draw the corresponding signal constellation. (5%)
- (b) Determine the optimum decision regions. (5%)
- (c) Determine an equivalent minimum-energy signal set that would yield the same probability of error as the signal set described above. Draw the corresponding signal constellation and optimum decision regions. (5%)
- 2 Consider a coherent binary frequency-shift keying (FSK) system where symbols 1 and 0 occur with equal probability. Let symbols 1 and 0 be encoded by signals s<sub>1</sub>(t) and s<sub>2</sub>(t), respectively, given by

$$s_i(t) = \begin{cases} \sqrt{2E_b / T_b} \cos(2\pi f_i t), & 0 \le t \le T_b \\ 0, & \text{elsewhere} \end{cases}$$

where  $i=1, 2, E_b$  is the transmitted signal energy per bit,  $T_b$  is the symbol duration, and  $f=(n_c+i)/T_b$  for some fixed integer  $n_c$ . Assume that a white Gaussian noise process of zero mean and power spectral density  $N_0/2$  is added during the transmission of an FSK signal.

- (a) Determine the optimum receiver. (6%)
- (b) Derive the error probability of the optimum receiver in terms of the complementary error function defined by

$$\operatorname{erfc}(u) = \frac{2}{\sqrt{\pi}} \int_{u}^{\infty} \exp(-z^{2}) dz \cdot (9\%)$$

(You must give derivations, or you would get no points in this sub-problem!)

## 國 立 清 華 大 學 命 題 紙

 変検エゼネ
 乙

 九十一學年度
 通訊工程研究所
 甲 組碩士班研究生招生考試

 2404
 平 3 頁第 2 頁 \*請在試卷【答案卷】內作答

Consider the following random-phase sinusoidal process

$$x(t) = A\cos(\omega_0 t + \theta), -\infty < t < \infty$$

where  $\omega_0$  is a constant,  $\theta$  is a random variable uniformly distributed over  $[0,2\pi)$  and A is a binary random variable with probabilities  $P_r[A=1]=p$  and  $P_r[A=2]=1-p$ .

- (a) Find the mean and correlation function of x(t). (10%)
- (b) Hilbert transformer is a linear time-invariant system with frequency response

$$H(f) = \begin{cases} -j, & f > 0 \\ j, & f < 0 \end{cases}$$

Assume that x(t) is input to the Hilbert transformer and y(t) is the associated output. Find the power spectral density of y(t). (5%)

4. Assume that

$$x(t) = as(t) + n(t), -\infty < t < \infty$$

where n(t) is white Gaussian noise with zero mean and power spectral density  $S_n(f) = 1$ , and the waveform of the signal s(t) is given by

$$s(t) = \begin{cases} 1 - t, & 0 \le t \le 1 \\ 0, & \text{otherwise} \end{cases}$$

- (a) Find the matched filter impulse response and peak output signal squared to output noise variance. (8%)
- (b) Assume that a=1 or a=-1 with equal prior probability and that  $y(t_0)$  is the matched filter output with the peak signal squared to output noise variance. Find the probability of error  $P_{\rm E}$  of the detector that decides a=1 if  $y(t_0)>0$  and a=-1 if  $y(t_0)<0$ . (You can express  $P_{\rm E}$  in terms of the Q-function  $Q(u)=\frac{1}{\sqrt{2\pi}}\int_u^\infty \exp(-z^2/2)dz$  or the complementary error function  $\exp(u)$  (7%)
- 5. For a linear modulation with the in-phase component  $s_t(t) = \frac{1}{2}m(t)$  and the quadrature component  $s_Q(t) = \frac{1}{2}\hat{m}(t)$  ( $\hat{m}(t)$  =Hilbert transform of m(t)), please show that  $s(t) = s_I(t)\cos(2\pi f_c t) s_Q(t)\sin(2\pi f_c t)$  is a single-sideband (SSB) with upper sideband transmitted signal. (10%)

## 國立清華大學命題紙

九十一學年度 <u>通訊工程研究所</u> <u>甲</u>組碩士班研究生招生考試 2404 科目 <u>通訊系統 科號 3002 共 3 頁第 3 頁 \*請在試卷【答案卷】內作答</u>

- 6. Consider that a double sideband-suppressed carrier (DSB-SC) modulated signal s(t) = A<sub>c</sub> cos(2πf<sub>c</sub>t)m(t) is transmitted over an additive white Gaussian noise channel with power spectral density N<sub>0</sub>/2, where m(t) is the message signal with average message power P and message bandwidth W.
  - (a) Find the average power of DSB-SC modulated signal s(t) and the average noise power in the message bandwidth. (5 %)
  - (b) Find the output signal of a coherent detector. (5 %)
  - (c) Find the output signal-to-noise ratio. (5 %)
- Assume that a linear time-invariant filter of impulse response h(t) (frequency response H(f)) is driven by a stationary random process X(t) (with power spectral density SX(f)) and Y(t) is the associated output.
  - (a) Find the power spectral density Sy(f) of Y(t). (10 %)
  - (b) Show that the power spectral density SX(f) is always nonnegative. (5 %)