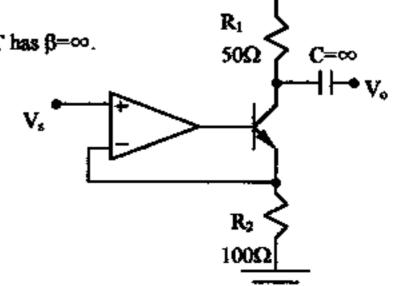

科目:<u>電子學</u>科號:<u>4102/3802</u> 共<u>3</u> 頁第<u>) 頁 *請在試卷【答案卷】內作</u>

- In the differential amplifier circuit as shown, all transistors are matched with parameters β=100, V_A=100 V, V_{EE(co)}=0.7 V, V_{CE,col}=0.3 V.
 - (1) Calculate the following parameters: (10%)
 - a. gm value of Q1 and Q2
 - b. differential voltage gain V₀/(V₁-V₂)
 - c. differential input resistance
 - (2) Find the minimum input common mode voltage V_{CM,min} and the output voltage swing V_{0,min}, and V_{0,max}. (9%)



- A common emitter amplifier was found to have a single-time-constant high frequency response with mid-band voltage gain of 40 dB and upper 3-dB frequency of 100 KHZ.
 - (1) Sketch the Bode plot for the voltage gain |A| (3%)

(2) Find |A|dB for frequencies at 400 KHZ and 4 MHz. (5%)

- In the circuit, the op-amp is ideal and the BJT has β=∞.
 - What is the feedback topology?
 Explain your reason.
 - (2) Find the voltage gain V_sV_s.
 - (3) Find the power dissipation on the BJT when V₅=2 V.

(8%)

 $V_{\infty} = 10V$

Fig. 2 for problem 3

科目:<u>電子學</u>科號:<u>4102/3802</u> 共<u>3</u>頁第<u>2</u>頁 <u>*請在試卷【答案卷】內作答</u>

- 4. A lightly doped pn diode is used for light detector with N_a=2x10¹⁴cm⁻³ and N_d=1x10¹⁶ cm⁻³. Assume the depletion region widths in the p region and the n region are W_p and W_n, respectively.
- (a) What is $W_p / W_n?(5\%)$
- (b) Find the maximum W_p and W_n that can be obtained if the junction breaks down at reverse bias voltage of 30V and assume the critical field for junction breakdown is 1x10° V/cm. (5%)
- For a common-source stage with a resistor load is shown in Fig. 3 below. Assume k_p=100μA/V², W=20μm, L=1μm, V_T=1V and neglect channel length modulation effect for M1.
- (a) Find the input bias range within which M1 is in saturation (5%)
- (b) What is the maximum small-signal voltage gain of this circuit? (5%)
- (c) Propose changes in the circuit parameters so the input bias range can be increased.(5%)
- (d) Replace M1 with a BJT, Q1 with Is=1x10⁻¹⁵A (neglect base current). Estimate the input bias range within which Q1 is in forward-active region. (5%) (FYI: ln2=0.69, ln3=1.1, ln5=1.6, ln7=1.9,ln10=2.3)

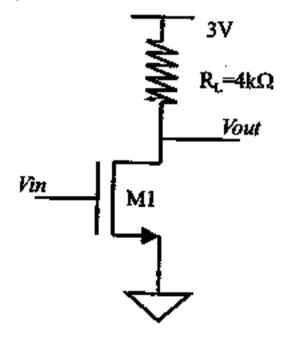


Fig.3 for problem 5.

科目:<u>電子學</u>科號:<u>4102/3802</u> 共<u>3</u>頁第<u>3</u>頁 <u>*請在試卷【答案卷】內作答</u>

For Fig. 4 below,

- (a) Draw the Input-output plot with explanations. 5%
- (b) What is this circuit's name? 5%
- (c) What are the limitations/constraints of this circuit? 5%

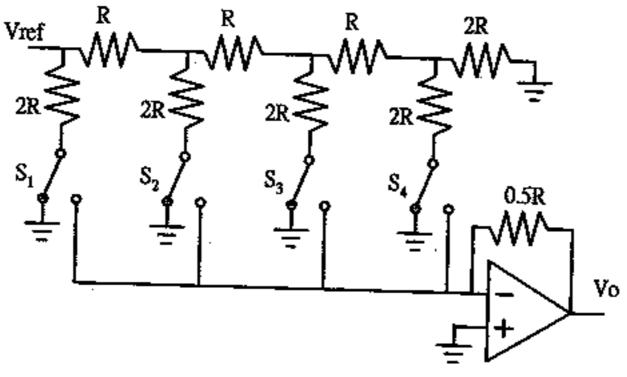


Fig. 4 for problem 6.

- 7. In Fig. 5, the saturated outputs for the ideal Op Amp are +10V and -10V,
 - (a) If Vref =0V, draw the Vi-Vo plot with explanations. (5%)
 - (b) If Vref =5V, draw the Vi-Vo plot with explanations. (5%)
 - (c) How do you get precise output level by using a resistor and two Zener diodes? 5%
 - (d)Also draw the Vi-Vo plot in (c) and show the values of the output levels with

$$V_{Z,reverse} = 5V$$
 and $V_{Z, forward} = 0.5V (5\%)$

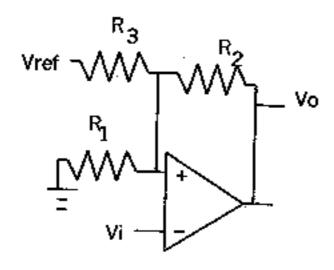


Fig. 5 for problem 7