類組: <u>電機類</u> 科目: <u>工程數學 B(3004)</u>

※請在答案卡內作答

- 本測驗試題為複選題(答案可能有一個或多個),請選出所有正確或最適當的答案,並請用2B鉛筆作答於答案卡。
- 共二十題,每題完全答對得五分,答錯不倒扣。

Notation: In the following questions, underlined letters such as  $\underline{a}, \underline{b}$ , etc. denote column vectors of proper length; boldface letters such as A, B, etc. denote matrices of proper size;  $A^{\mathsf{T}}$  means the transpose of matrix A, and  $I_n$  is the  $(n \times n)$  identity matrix.  $\mathbb{R}$  is the usual set of all real numbers.  $\langle \underline{a}, \underline{b} \rangle$  denotes the inner product of vectors  $\underline{a}$  and  $\underline{b}$ . If X is a discrete random variable, then the probability mass function (PMF) of X is denoted by  $p_X(x)$ ; if X is a continuous random variable, it is always assumed that X has a probability density function (PDF), denoted by  $f_X(x)$ .  $\mathbb{E}[X]$  means the expected value of a random variable X. Pr() denotes the probability measure in a probability space.

- \cdot Let V and W be finite dimensional real vector spaces with ordered bases  $\beta$  and  $\gamma$ . Assume that T and U are linear transformations from vector space V into W. Which of the following statements are true?
  - (A) For any scalar  $a \in \mathbb{R}$ , aT + U is a linear transformation.
  - (B) If n is the dimension of vector space V and m is the dimension of vector space W, then the matrix A to represent T relative to the bases  $\beta$  and  $\gamma$  is an  $(n \times m)$  matrix.
  - (C) If W = V, T has an inverse linear transformation  $T^{-1}$ .
  - (D) If T is onto, then the nullity of T equals 0.
  - (E) None of the above are true.
- = \( \text{A generalized quadratic equation in two variables } x \) and y is an equation of the form  $ax^2 + bxy + cy^2 + dx + ey + f = 0$ , where a, b, c, d, e, f are some real constants. Let  $\underline{z} = [x \ y]^{\mathsf{T}}$ ; then we can represent the generalized quadratic equation as  $\underline{z}^{\mathsf{T}} \mathbf{A} \underline{z} + \underline{g}^{\mathsf{T}} \underline{z} + f = 0$  for some matrix  $\mathbf{A}$  and vector  $\underline{g}$ . Assuming  $\mathbf{A}$  is symmetric, which of following statements are true?
  - (A) A is always orthogonally diagonalizable.
  - (B) Suppose that A has an eigenvalue  $\lambda$  with multiplicity k, then the eigenspace associated with  $\lambda$  can have dimension less than k.
  - (C) A can be factored into a matrix-product QR, where Q is an orthogonal matrix and R is an upper triangular matrix.
  - (D) If  $det(\mathbf{A}) = 0$ , the solutions (x, y) to the corresponding generalized quadratic equation form a parabola on the two dimensional Cartesian plane.
  - (E) None of the above are true.
- $\Xi$  > V and W are both subspaces of a vector space U. Let  $V = \{\underline{v}_1, \underline{v}_2, \dots, \underline{v}_k\}$  and  $W = \{\underline{w}_1, \underline{w}_2, \dots, \underline{w}_m\}$  be sets of linearly independent vectors, which span V and W, respectively. Which of the following statements are true?
  - (A) The set-union of V and W is a subspace of U.
  - (B) The dimension of the set-union of V and W is equal to k+m.
  - (C) The intersection of  $\mathcal V$  and  $\mathcal W$  is a linearly independent set.
  - (D) Every vector in the set-union of V and W is a certain linear combination of elements in V and W.
  - (E) None of the above are true.
- $\square$  Let A be an  $(m \times n)$  matrix, which can be factored into a matrix-product  $\mathbb{Q}\mathbb{R}$ , where  $\mathbb{Q}$  is an orthogonal matrix and  $\mathbb{R}$  is an upper triangular matrix. Which of following statements are true?

## 台灣聯合大學系統 103 學年度碩士班招生考試試題 共\_5\_頁第 2\_頁

類組: 電機類 科目: 工程數學 B(3004) ※請在答案卡內作答

- (A)  $m \ge n$
- (B) The system of linear equations  $A\underline{x} = \underline{b}$  must be a consistent system for any vector  $\underline{b} \in \mathbb{R}^m$ .
- (C) The right null space of A contains only the all-zero vector.
- (D) If m = n, then **A** is diagonalizable.
- (E) None of the above are true.

五、 Let

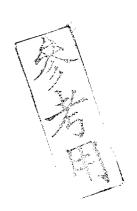
$$\mathbf{P} = \left[ \begin{array}{ccc} 3 & 2 & -4 \\ 1 & 2 & -2 \\ 1 & 1 & -1 \end{array} \right].$$

Which of the following statements are true?

- (A) P has three distinct eigenvalues.
- (B) P is diagonalizable.

(C) 
$$\mathbf{P}^4 = \begin{bmatrix} 31 & 30 & -60 \\ 15 & 16 & -30 \\ 15 & 15 & 29 \end{bmatrix}$$

- (D) P has an LU decomposition as P = LU, and the elements in the first row of U are integers.
- (E) None of the above are true.
- 六、 Which of the following statements are true?
  - (A) If the vectors  $\underline{v}_1$ ,  $\underline{v}_2$ ,  $\underline{v}_3$ ,  $\underline{v}_4$ , and  $\underline{v}_5$  span  $\mathbb{R}^4$ , then  $\underline{v}_1$ ,  $\underline{v}_2$ , and  $\underline{v}_3$  must form a basis for  $\mathbb{R}^4$ .
  - (B) If the rank of a  $(7 \times 11)$  real matrix A is 3, then the right null space of A must be eight dimensional over  $\mathbb{R}$ .
  - (C) There exists a noninvertible  $(2 \times 2)$  matrix **A** that is similar to  $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ .
  - (D) If V is the set of all  $(3 \times 3)$  real matrices  $\mathbf{A}$  such that the vector  $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$  is in the column space of  $\mathbf{A}$ , then V is a subspace of  $\mathbb{R}^{2 \times 2}$ .
  - (E) None of the above are true.
- $+\cdot$  Let A and B be any  $(n \times n)$  real matrices. Which of the following are true?
  - (A) Eigenvalues of AB and BA equal the eigenvalues of A times the eigenvalues of B.
  - (B) A and B must be similar for the eigenvalues of AB to be equal to the eigenvalues of BA.
  - (C) AB and BA share the same set of eigenvectors.
  - (D) Eigenvalues of A + B equal the eigenvalues of A plus the eigenvalues of B.
  - (E) None of the above are true.
- $\wedge$  Let **P** be a  $(6 \times 6)$  non-zero orthogonal real-valued projection matrix. Which of the following are always true?
  - (A) rank(P) = 6.
  - (B) Eigenvectors of  ${\bf P}$  are linearly independent, but not orthogonal.



## 台灣聯合大學系統 103 學年度碩士班招生考試試題 共 5 頁 第 3 頁

類組:<u>電機類</u> 科目:<u>工程數學 B(3004)</u>

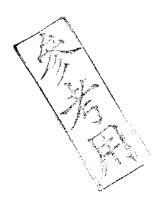
※請在答案卡內作答

- (C) P is not necessarily symmetric.
- (D) The set of eigenvalues of matrix  $\left(I_6 2\frac{v}{v}\frac{v}{T}\right)$  is the same for any nonzero vector  $\underline{v} \in \mathbb{R}^6$ .
- (E) None of the above are true.
- 九、 Which of the following statements are true?
  - (A) If the columns of a  $(9 \times 7)$  matrix form an orthonormal set, then the same is true of its rows.
  - (B) If the  $(m \times n)$  real-valued matrix **A** satisfies  $\mathbf{A}^{\mathsf{T}} \mathbf{A} = \mathbf{I}_n$ , then for any nonzero vector  $\underline{x} \in \mathbb{R}^m$ ,  $\underline{x} \mathbf{A} \mathbf{A}^{\mathsf{T}} \underline{x}$  is orthogonal to the column space of **A**.
  - (C) If V is a subspace of an inner-product space W, then every element  $\underline{w} \in W$  can be expressed as  $\underline{w} = \underline{u} + \underline{v}$ , where  $\underline{v} \in V$  and  $\underline{u}$  lies in the orthogonal complement of V.
  - (D) If  $\{\underline{v}_1,\underline{v}_2,\ldots,\underline{v}_n\}$  spans a real inner-product space V, and if  $\underline{u}\in V$  and  $\langle\underline{u},\underline{v}_i\rangle=0$  for  $i=1,2,\ldots,n$ , then  $\underline{u}$  is the all-zero vector.
  - (E) None of the above are true.
- + · Which of the following statements are true?
  - (A) A real square matrix **A** may satisfy  $\underline{z}^{\mathsf{T}}\mathbf{A}\underline{z} > 0$  for any nonzero real vector  $\underline{z}$ , without being symmetric.
  - (B) Every square matrix has an LU decomposition.
  - (C) If an  $(m \times n)$  real matrix A has linearly dependent columns and  $\underline{b} \in \mathbb{R}^m$ , then  $\underline{b}$  does not have a unique projection onto the column space of A.
  - (D) For x + 3y = 1, 2x y = 1, 4x + y = 1, the normal equations are 21x + 5y = 7 and 11x + 5y = 3.
  - (E) None of the above are true.
- +- · Which of the following statements are true?
  - (A) The sample space is a set that contains all real numbers.
  - (B) The probability measure can assign negative values to some events.
  - (C) Disjoint events are statistically independent.
  - (D) The probability of the union of a countably infinite number of disjoint events equals the sum of the probability of each individual event.
  - (E) None of the above are true.
- $+=\cdot$  Consider a random experiment of rolling a fair 6-face dice twice independently. Let  $X_1$  denote the face value of the first roll and  $X_2$  the second roll's face value. Which of the following statements are true?
  - (A)  $X_1$  is a random variable that maps possible outcomes to real numbers.
  - (B)  $\{X_1=4\}$  refers to the event that the first roll has the 4-point face up.
  - (C) The probability of  $\{X_1 = 1\}$  given  $\{X_2 = 1\}$  equals 1.
  - (D) The probability of  $\{X_1 + X_2 > 4\}$  equals  $\frac{5}{6}$ .
  - (E) None of the above are true.
- $+ \equiv \cdot$  For a discrete random variable X, which of the following statements are true?
  - (A)  $\{X = x\}$  represents an event that contains only one possible outcome of the random experiment.
  - (B) A function of the random variable, say,  $X^2$ , defines another random variable.
  - (C) The probability of tossing a coin n times and observing k times of heads can be described by the binomial PMF:  $p_X(k) = \binom{n}{k} p^k (1-p)^{n-k}$ , where p is the probability that the head appears in each statistically independent toss.

## 類組:<u>電機類</u> 科目:工程數學 B(3004)

※請在答案卡內作答

- (D) The PMF of  $X^2$  is given by  $p_{X^2}(x) = [p_X(x)]^2$ .
- (E) None of the above are true.
- + $\mathbf{p}$  Let X be a geometric random variable with PMF  $p_X(k) = (1-p)^{k-1} p, \ k=1,2,\ldots;$  then which of the following statements are true?
  - (A)  $\mathbb{E}[X] = p$ .
  - (B)  $\mathbb{E}\left[\frac{1}{X}\right] = \frac{1}{n}$ .
  - (C)  $\mathbb{E}[X|X>1]=1+p$ .
  - (D) Pr(X > 1) = p.
  - (E) None of the above are true.
- $+ \pm x$  Let X and Y be two discrete random variables. Which of the following statements are true?
  - (A) If they are statistically independent, then  $\mathbb{E}[XY] = \mathbb{E}[X] \times \mathbb{E}[Y]$ .
  - (B) If their covariance equals one, then they cannot be statistically independent.
  - (C) The marginal PMF  $p_X(x)$  obtained from the joint PMF  $p_{X,Y}(x,y)$  satisfies  $\sum_{x} p_X(x) = 1$ .
  - (D) The conditional expectation of X given  $\{Y = y\}$  is a function of y.
  - (E) None of the above are true.
- +  $\dot{\pi}$  Let X and Y be two statistically independent random variables with mean  $\mu_X$ ,  $\mu_Y$ , and variance  $\sigma_X^2$ ,  $\sigma_Y^2$ , respectively. For any  $a > (\mu_X + \mu_Y)^2$ , which of the following are upper bounds of  $\Pr((X + Y)^2 \geq a)$ ?
  - (A)  $\frac{\sigma_X^2 + \sigma_Y^2}{\sigma_X^2}$
  - (B)  $\frac{\sigma_X^2 + \sigma_X^2}{a^2}$
  - (C)  $\frac{\sigma_X^2 + \sigma_Y^2}{(\sqrt{a} |\mu_X + \mu_Y|)^2}$
  - (D)  $e^{-a}\mathbb{E}[e^{(X+Y)^2}]$
  - (E) None of the above are true.
- ++ \cdot \cdot \text{Let } X \text{ and } Y \text{ be two statistically independent continuous random variables with PDFs }  $f_X(x)$  and  $f_Y(y)$ , respectively. Suppose that Z = X + Y and W = X Y with PDFs  $f_Z(z)$  and  $f_W(w)$  respectively. With  $\sup_z f_Z(z)$  being the supremum of  $f_Z(z)$  for all  $z \in (-\infty, \infty)$ , which of the following statements are true?
  - (A)  $\sup_z f_Z(z) \le \sup_x f_X(x)$
  - (B)  $\sup_{w} f_{W}(w) \le \sup_{y} f_{Y}(y)$
  - (C) Z and W are statistically independent random variables.
  - (D) The joint PDF of Z and W is  $f_{Z,W}(z,w) = \frac{1}{2} f_X(\frac{z+w}{2}) f_Y(\frac{z-w}{2})$ .
  - (E) None of the above are true.
- + $\wedge$  Let X and Y be joint normal random variables with mean  $\mu_X$ ,  $\mu_Y$  and variance  $\sigma_X^2$ ,  $\sigma_Y^2 > 0$ , respectively. The correlation coefficient of X and Y is  $\rho$ . Which of the following statements are true?
  - (A) Conditioning on Y = y, the random variable  $X | \{Y = y\}$  is also normal.
  - (B) The conditional variance of X given Y is  $(1 \rho)\sigma_X^2$
  - (C) If  $\rho = 1$ , then  $Y = \left| \frac{\sigma_Y}{\sigma_X} \right| (X \mu_X) + \mu_Y$  with probability one.
  - (D) If  $\rho = 0$ , then X and Y are uncorrelated, but not necessarily statistically independent.



## 台灣聯合大學系統 103 學年度碩士班招生考試試題 共 5 頁 第 5 頁

類組:<u>電機類</u> 科目:工程數學 B(3004)

※請在答案卡內作答

- (E) None of the above are true.
- $+\pi$ . Let Y be a Poisson random variable with PMF  $p_Y(y) = e^{-\lambda} \frac{\lambda^y}{y!}$ , for y = 0, 1, ..., and for some parameter  $\lambda > 0$ . Conditioning on Y = y, X is a binomial random variable with PMF  $p_{X|Y}(x|y) = {y \choose x} p^x (1-p)^{y-x}$ , for  $x = 0, 1, \dots, y$ , where  $p \in [0, 1]$  is some constant. Which of the following statements are true?
  - (A)  $\mathbb{E}[X] = p\lambda$ .
  - (B) The variance of random variable X is  $p\lambda$ .
  - (C) Let  $\hat{X}$  be an estimate of X based on observation Y = y. Then the best  $\hat{X}$  which minimizes  $\mathbb{E}[(X \hat{X})^2]$  is  $\hat{X} = py$ .
  - (D) X is a Poisson random variable with parameter  $\lambda p$ .
  - (E) None of the above are true.
- =+ Let  $X_1, X_2, \cdots$  be a sequence of statistically independent and identically distributed random variables with mean  $\mu$  and variance  $\sigma^2$ . Define  $S_n = \frac{1}{n} \sum_{i=1}^n X_i$  for integer  $n \geq 1$ . Which of the following statements are true?
  - (A) Random variable  $S_n$  has variance equal to  $\sigma^2$ .
  - (B) If  $M_{X_i}(s)$  and  $M_{S_n}(s)$  are the moment generating functions of  $X_i$ ,  $i=1,2,\cdots$ , and  $S_n$ , respectively, then  $M_{S_n}(s) = \prod_{i=1}^n M_{X_i}(s)$ .
  - (C) If  $n > 10^4$ ,  $S_n \in (\mu 0.1\sigma, \mu + 0.1\sigma)$  has a probability larger than 0.99.
  - (D)  $\frac{\sqrt{n}}{\sigma}(S_n \mu)$  converges in distribution to a standard normal random variable as  $n \to \infty$ .
  - (E) None of the above are true.

