	國	立	沅	青 華	大	馬	<u>男</u>	命	題	紙	
	95 學年度			動力機	械系	(所)		丙	组碩-	士班入學考試	
科目_	材料	力	學;	科目代碼_	1701_;	共3_	_頁第	_1頁	*請在	【答案卷卡】内	作答

 A vertical post 2.5-meters high must support a lateral load P = 12 kN at its upper end. Two plans are proposed – a solid wood post and a hollow aluminum tube. (a) What is the minimum required diameter d₁ of the wood post if the allowable bending stress in the wood is 15 Mpa? (b) What is the minimum diameter d₂ of the aluminum tube if its wall thickness is to be one-eight of the outer diameter and the allowable bending stress in the aluminum is 50 Mpa? (20 points)

2. The composite beam shown in figure below is formed of a wood beam (4.0 in. X 6.0 in.) and a steel reinforcing plate (4.0 in. wide and 0.5 in. thick). The beam is subjected to a positive bending moment M = 60 k-in. Calculate the largest tensile and compressive stresses in the wood and the maximum and minimum stresses in the steel if $E_{wood} = 1,500$ ksi and $E_{steel} = 30,000$ ksi (20 points)

	或	立	清	華	大	學	命	題	紙	
	95 學年度				条((所)	丙	組碩	士班入學考試	
科目_	材料	力	學 科	目代碼	1701_共_	3頁	第2_頁	*請在	【答案卷卡】	內作答

3. A compression bar having a square cross section of width b must support a load $P = 8,000 \ lb$. The bar is constructed from two pieces of material that are connected by a glued joint along the plane pq, which is at angle $\alpha = 40^{\circ}$ to the vertical. The material is a structural plastic for which the allowable stresses in compression and shear are $1,100 \ psi$ and $600 \ psi$, respectively. Also, the allowable stresses in the glued joint are 750 psi in compression and 500 psi in shear. Determine the minimum width b of the bar. (20 points)

4. A block R of rubber with Young's modulus E and Poisson's ratio v is confined between plane parallel walls of a steel block S (see figure). A uniformly distributed pressure p₀ is applied to the top of the rubber block by a force F. (a) Derive a formula for the lateral pressure p between the rubber and the steel. (disregard friction between the rubber and the steel, and assume that the steel block is rigid) (b) Derive a formula for the dilatation e of the rubber. (c) Derive a formula for the strain energy density u of the rubber. (d) Determine the maximum shear stress in the rubber. (20 points)

		國	立	清	華	大	學	命	題	紙	
		95 學年,	度	重				丙组碩士班入學考試			
开	斗目	材;	料力學	科目	代碼]	701_共_	3頁第	3頁	*請在	【答案卷卡】	內作答

Beam ABC with flexural rigidity EI is fixed at A and supported by a spring of stiffness k at B (see figure). A concentrated force P acts at the free end C. (a) Find the reaction at B, (b) draw the shear-force and bending-moment diagrams for beam ABC, and (c) determine the deflection at C.

