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Ql. Figure 1 shows a rotor supported by two magnetic bearings. Bearing 1 is 

located at distance P 1 from the center of mass of the rotor and generates a force 

ft to support the rotor, and bearing 2 is located at distance P 2 from the center of 

mass of the rotor and generates a force fz to support the rotor. Denote the 

displacement of the center of mass of the rotor as Xe and the rotation angle of the 

rotor as 0. The mass of the rotor is m, and the moment of the inertia is / . 

Ignore the gravity and assume that the rotation angle e is small so that the 

moment arm from bearing force ii to the center of mass is P1 , and the moment 

arm from bearing force f2 to the center of mass is f 2 . 

f2 

m,I 

Xz 

Figure 1 

(a) Using Newton's law, derive the differential equations to describe the dynamics 

of Xe and 0. (2 pts) Let L{xe(t)} = Xe(s), £{0(t)} = 0(s), 

L{f1 (t)} = F1 (s), and £{f2 (t)} = F2 (s). From the differential equations you 

derived, it can be shown that 

[
Xc(s)] = [G11 (s) G12(s)] [F1 (s)] 
0(s) G21 (s) G22 (s) F2 (s) · 

Compute G11 (s), C12 (s), G21 (s), and G22 (s). (4 pts) 

(b) Because of the electro-magnetic interaction, the magnetic forces can be 

expressed as ii = kxx1 + kii1 , and fz = kxxz + kiiz, where kx > 0 and 

ki > 0 are electromagnetic coefficients, xi(x2) is the rotor's displacement at 
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the bearing 1 (2) (See Figure 1 ), and i1 ( i2 ) is the control input current to 

bearing 1 (2). Assume 0 is small, derive x1 as a linear combination of Xe 

and 0, and x2 as a linear combination of Xe and 0. (2 pts) Under the 

assumption that I= mf1-f2 , Compute P11 (s), P12 (s), P21 (s), and P22 (s) in 

the system 

[X
1 (s)] = [P11 (s) P12 (s)] [Ii(s)]. (12 pts) 

X2 (s) P21 (s) P22Cs) l2(s) 

(c) Using the transfer functions you find in part (b), compute the open-loop poles 

of the system. Is the system stable? (5 pts) 

Q2. Consider a control system in Figure 2 in which P(s) =-/- . 
s -1 

r + . ~ C(s) ~ ~ 

' -

Figure 2 

(a) Plot the Bode plot of P(s). (4 pts) 

~ P(s) ~ 

y 
_ .. -

(b) The target is to stabilize P(s) using a lead compensator C(s) = K (1+aTs) in 
(l+Ts) 

which K, a, T > 0. Assuming that the steady-state error due to a step reference 

input should be limited to be within 4%, what is the minimum value for K? Q 
.P!fil Under the choice of the minimum K, it is desired that the phase margin 

is 45°. Determine the parameters a and T. What is the crossover 

frequency you achieve? You may want to conduct the compensator design 

using the Bode plot in (a). (13 pts) 

( c) Is it possible to achieve the same design specifications using a lag compensator? 

Show your reasoning. (5 pts) 
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Q3. 

Saturation 
R(s) _r 2 

s 

+ 
20 

Figure 3 
The block diagram above shows an example of anti-windup for integral control 

Y(s) 

system. If we consider the saturation element as an equivalent gain, the root locus can 

be drawn and a prediction of the response to large inputs can be made. 

(a) Compute the roots of the closed loop characteristic equation if the saturation block 

has a gain of 1 (5 pts) 

(b) Replace the saturation block with an equivalent gain K (the slope is K before 
saturation). Sketch the rnot locus with respect to K (K>O). (10 pts) 

(c) For (b), calculate and give the break-away points and break-in points if there is 

any. (5 pts) 

( d) Based on looking at the root locus, what is the largest value of slope Kat the 

saturation block to result in a stable closed-loop system? (5 pts) 
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Q4. 

Controller Saturation 
R(s) + _r 2 Y(s) 

s 

+ 
20 -- ~-----' 

Figure 4 _________________ , ______ _ 
Ziegler-Nichols• Tuning for the :Regulator 
Dc(s) = kp(1 + 1/'frs + Tos), Based on the Ultimate 
Sensitivit;y Method 

Type af Controller Optimum Ga1n 

p 

PI 

PIO 

kp = 0 .. 5Ku 

{ ? .·· ~u45Ku 
11 = TI 

{ 

kp =0.6 Ku 
Tj = 0.5Pu 
To= 0.125Pv 

Table 1 Ziegler-Nichols Tuning method 

(a) In the case, the slope of the saturation element is 2 and the saturation signal is 
too large to be reached. Based on the Ziegler-Nichols Tuning method shown 
as above table, design a PI controller for Dc(s) shown in above block diagram. 
Give the values of your (kp, Ti) (10 pts) 

(b) Determine the relevant error constant with respect to reference input R(s) 

for this closed-loop system with your PI controller Dc(s) (5 pts) 
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QS. Given the state space representation of the plant. 

y=[50 01[:] 
Design a state feedback controller such that the closed-loop response to a unit-step 
input has 

MP= 4.33%, ts= 0.0474sec 

(10 pts) 




