	國立清華大學命題紙
	95學年度系(所)组碩士班入學考試
利利	→目
1.	一個晶體平面時與 x, y, z 軸分別交於 1, 2, 3 , 其米勒(Miller)指標為 (a) [123] (b) [321] (c) [236] (d) [632] (e) [210]
2	下列哪一個元素無法用歐傑電子分光儀(Auger electron spectroscopy)分析 (a) 氫 (b) 鋰 (c) 硼 (d) 碳 (e) 氧
3	fcc 晶體(111)平面上的 1/2[110]全差排(total dislocation),可分解爲哪兩條部份(partial)差排? (a) 1/6[121], 1/6[211] (b) 1/6[121], 1/6[211] (c) 1/6[121], 1/6[211] (d) 1/6[121], 1/6[211] (e) 1/6[121], 1/6[211]
4	. 承上題,(111)平面上一對 1/6<112> 部份差排交叉滑移(cross slip)到(111)平面另一對 1/6<112> 部 份差排,則留下的梯棒(stair-rod)差排為 (a) 1/6[110] (b) 1/6[110] (c) 1/6 [110] (d) 1/6 [110] (e) 1/6[101]
5	. 假設在 fcc 單晶中,拉伸方向介於[100], [101], [111]之間施以拉伸應力,則沿拉伸方向的晶體方 位最後會變成 (a) [211] (b) [211] (c) [211] (d) [211] (e) [121]
6	 硫化鐵在鋼鐵熱加工時易造成熱脆(hot short),主要是因為硫化鐵 (a)在晶粒內部形成一長串固體 (b)在晶粒內形成液體顆粒 (c)在晶界上形成一層液體 (d)在晶界形成一層氧化層 (e)在晶界上形成一長串固體
7	al al block t ^{0.5} (b) D ∞ t ^{-0.5} (c) D ∞ t ⁻¹ (d) D ∞ t ¹ (e) D ∞ t ⁻²
8	. 固定壓力下,三元系統中,平衡時能夠同時存在的相數最多有幾個? (a) 2 (b) 3 (c) 4 (d) 5 (e) 6
9	 When a binary alloy is formed between A and B atoms, there are three bonding energies in the system - ε_{AA}, ε_{BB}, and ε_{AB} representing the bonding energy between A-A atom pair, B-B atom pair, and A-B atom pair, respectively. For the system to segregate or precipitate, the usual conditions is (a) ε_{AA} > ε_{AB} > ε_{BB} (b) ε_{AB} >> (ε_{AA}+ε_{BB})/2 (c) ε_{AB} << (ε_{AA}+ε_{BB})/2 (d) ε_{AB} < ε_{AA}+ε_{BB} (e) none of the above.

	威	立	清	華	大	學	命	題	紙	
	95 學年月	变	材料所)		組碩士班)	入學考試	
科目_	王里工汉	「颜三	科目	代碼_/_	<u>o3_共_/</u>	7_頁第_	頁	*請在【答	案卷卡】P	日作答
 10. In the Kirkendall effect (diffusion couple), which of the following description is wrong. (a) The effect confirms that the vacancy mechanisms the major diffusion mechanism for substitutional solid solution (b) The region in tension can accompany pore formation (c) Element with higher melting temperature usually diffuses faster (d) On the side of slower moving species, the region is in compression (e) none of the above. 										
11. Tl fro m	11. The internal friction method is used to measure the interstitials diffusivity. Assume that the stressing frequency is $f(1/f = \tau_p)$ and the mean time of stay for an interstitials is τ_{σ} . What is the condition for maximum energy loss?									
(a)	$f \sim \tau_{\sigma}$	(b) $\tau_p > \cdot$	τ _σ (c)	$\tau_p < \tau_\sigma$	(d) τ_p	- τ _σ	(e) non	e of the abo	ve.	
12. Fo di (a) (d)	 12. For the alloy system being capable of forming metallic glasses, what characteristics does the phase diagram of the system usually have? (a) intermetallic compound (b) high peritetic point (c) misibility gap (d) deep monotetic point (e) deep eutectic point. 									
13. W si	Thich of the mple plate-	followin like lame	g is not an i llar eutectio	mportan freezing	t factor tha g?	t determi	nes the l	amellar spa	cing in the o	case of
(a) (d)	supercoolin solute diffu	ng 1sivity	(b) surfa (e) none (ce energ	y between 1 ove.	the lame	lar	(c) enth	alpy of free	ezing
14. W (a) (d) (e)	 14. Which of the following is not the characteristics of the Martensitic transformation? (a) reversible characteristic (b) athermal transformation (c) rational nature of the habit plane (d) complexity of the deformation (Bain distortion, shear deformation, rotation of the transformed lattice) (e) none of the above. 									
15. V	/hich of the olid matrix	followin	ig factors is	not impo	ortant in the	e discuss	ion of nu	cleation of	a new phase	e from a
(a) (c)	surface energy strain energy	ergy of so gy	olid (b (d) temper) free ene ature	ergy change (e) heter	e in form ogeneou	ing the c s sites	ritical embr	суо	

國	立	清	華	大	學	命	題	紙		
95 學年度		材料所	•	_系(所)			組碩士班	入學考試		
科目 <u>王王 辺底会</u> 科目 <u>代碼</u> <u>1003</u> 共 <u>1</u> 9 頁第 <u>*請在【答案卷卡】內作答</u> 16. Which of the following description about the Iron-Carbon alloy system is wrong? (a) Austenite is FCC Fe (b) Ferrite is BCC Fe (c) Pearlite consists of plates of Fe ₃ C in the matrix of ferrite (d) The growth of pearlite resemble that of the eutectic freezing (e) none of the above										
 17. What are the indications of Davisson-Germer experiment? (a) particle nature of electrons (b) validation of de Broglie relationship (c) supplementary evidence of Compton effect (d) existence of electron spin (e) none of the above 										
18. For a particle of second lowest (a) $h^2/8mL^2$	 18. For a particle of mass <i>m</i> confined in a 3D infinite potential well of dimensional L×L×L, what is the second lowest energy level? (a) h²/8mL² (b) h²/4mL² (c) 3h²/8mL² (d) 3h²/4mL² (e) none of the above 									
19. If a light of wa Meanwhile, the $\Delta\lambda 2$. Which (a) $\Delta\lambda 1>0$; $\Delta\lambda 2$ (d) $\Delta\lambda 1<0$; $\Delta\lambda 2$	 19. If a light of wavelength λ travels from the Sun to the Earth, the gravity induced wavelength shift is Δλ1. Meanwhile, the Earth is moving away from the Sun, the relative movement induced wavelength shift is Δλ2. Which description is correct? (a) Δλ1>0; Δλ2>0 (b) Δλ1>0; Δλ2<0 (c) Δλ1<0; Δλ2>0 (d) Δλ1<0; Δλ2<0 (e) insufficient information 									
 20. Which statement is correct? (a) the velocity of a particle decreases after tunneling through a quantum potential barrier (b) the mass of a particle decreases after tunneling through a quantum potential barrier (c) the energy of a particle decreases after tunneling through a quantum potential barrier (d) the amplitude of a particle's wavefunction decreases after tunneling through a quantum potential barrier (e) all above are true 										
 21. Assume a hydrogen atom is excited to a quantum state (n=2, l=1, m_l=1, s=1/2), what is the angle between the magnetic moment induced by orbital angular momentum μ_l and the applied magnetic field B? (a) 0° (b) 45° (c) 90° (d) 135° (e) 180° 										

	威	立	清 善	善 大	學	命	題	紙			
9	5 學年度	*	大料昕	条 ()	斩〕	组	碩十班入	學老試			
100		TA =			.9 百位	() 百 *+	キャーのない	安坐上了内外	fr the		
科目	<u>27 - 281</u>	222 -	_ 杆目代例	与_/03	_/ (貝 弗	貝	有仕 合	系态下 內1	<u>F合</u>		
22. Consider a 2-dimensional harmonic oscillator, what are the 2^{nd} lowest energy level and its degeneracy? (a) $(3\hbar\omega_0, 3)$ (b) $(3\hbar\omega_0/2, 3)$ (c) $(2\hbar\omega_0, 2)$ (d) $(\hbar\omega_0, 1)$ (e) $(\hbar\omega_0/2, 2)$ ω_0 is the oscillation angular frequency											
23. Whic	23. Which statement is incorrect for the Bohr model?										
(a) the	magnitud	le of orbita	l angular me	omentum is a	ssumed to b	be $\sqrt{l(l+1)}$	ħ				
(b) the	electron	only locate	d at the spe	cific orbital v	vith the radi	us of $n^2 a_0$ (ao is the F	Bohr radius)			
(c) ene	rgy levels	s are propo	rtional to 1/	n ²							
(d) the	atomic s	pectra resul	lt from the t	ransitions am	ong differei	nt energy le	vels				
(e) the	nuclear n	nass will af	fect the way	velength of at	omic spectr	al lines					
 (a) The (b) the (c) paid (d) the (e) ele 	 24. Which statement is incorrect? (a) The photoelectric effect reveal the particle nature of photon (b) the Compton scattering confirms the particle nature of photon (c) pair production occurs in the empty space (d) the Frank-Hertz experiment demonstrate the existence of discrete energy states of mercury (e) electron diffraction shows the wave nature of particles 										
25. Ther	e are som	e particles	often menti	oned in mode	rn physics s	such as lept	ons, mesc	ons, baryons, o	quarks,		
(a) 1	He, phot	(b) 2	ooper pair.	How many	of them are	fermions?					
(a) 1		(0) 2	(0) 5	(4) +	(0) 5						
26. Rota N ₂ , C direc	26. Rotational spectra of molecule are in general in the microwave region. Molecules like H ₂ O, CO, CO ₂ , N ₂ , O ₂ , O ₃ , and CH ₄ are present in the earth's atmosphere. How many of them may absorb microwave directly and hamper communication?										
(a) 0	((b) 1	(c) 2	(d) 3	(e) 4						
27. In th	e followin	ng term syn	nbols, which	h one is a pos	sible expres	ssion for the	e electron	ic configuration	on of		
$(a)^{2}$	5/2	(b) ${}^{0}S_{1/2}$	(c) ${}^{1}S_{1/2}$	(d) $^{2}D_{1}$	(e) $^{2}P_{3/2}$						

國 立	清	華 大	學	命	題	紙				
95 學年度	材料	<u></u> 所 系 ((所)	組み	頑士班入學	基考試				
科目 <u>王文</u> (高会) 28. Consider a system c be described with <i>E</i> energy of the system (a) 6 <i>E</i> 。 (b) 9	主 科目 $n = n^2 E_o$; when h when these p E_o (c)	犬碼 <u>1003</u> 共 independent an re E_o is the gro articles are fern 14 E_o (d)	★ <u>1</u> 9頁第 <u></u> ad identical part und state energ mions? 3 E _o (e) I	<u>5 頁 *請</u> ticles. Th y (<i>n=1</i>). E _o	<u>在【答案</u> le 1-particl What is th	卷卡】內作答 e state energy can e ground state				
 29. Consider a CO ₂ gas motion are activated	system. If th l, what would l	e system temp be the molar sp	erature is suffic pecific heat of C	ciently high CO_2 at cons	n that all m stant volum	odes of molecular ne?				
(a) $\frac{15R}{2}$ (b)	$\frac{13R}{2}$ (c)	$\frac{11R}{2} \qquad (d)$	$\frac{9R}{2}$ (e)	$\frac{7R}{-2}$						
 30. Due to the spin-orbi $\Delta E = 2.3 \times 10^{-5}$ eV ap the appropriate ΔE	it coupling, the part. The sam for the 3 <i>p</i> split	2p state in the e effect also of ?	hydrogen aton ccurs for 3 <i>p</i> sta	a tends to s te of hydro	plit into tv gen atom.	vo substates with What would be				
(a) 0.575 (b)	1.15 (c)	3.45 (d)	4.6 (e)	9.2 ×10	0 ⁻⁵ eV					
31. A thermograph meaWhat is the percent(a) 0.8% (b)	sures the rate a age difference 0.64% (c)	nt which each s between total r 0.48% (d)	mall portion of adiation from s 0.32% (e)	f person's s skin at 37 °) 0.16%	kin emits i C and 37.5	nfrared radiation. °C				
32. The energy differen B =1 Tesla is about	ce between the	spin-up and s	pin-down states	s of a proto	on in magn	etic field of				
(a) 0.44 (b)	0.88 (c)	1.76 (d)) 3.52 (e)) 7.04 ×1	0 ⁻⁷ eV					
33. The moment of ine	rtia of the shad	ed area with re	spect to the x a	xes is –						
(a) a^4 (b) $2a^4$	(c) 4a ⁴	(d) 8a ⁴	(e) none o	of the abov	e					
y y d d d d d d d d d d										

國立清華大學命題紙 95學年度 <u>材料所</u> 系(所) <u>組碩士班入學考試</u> 件目 <u>理工刻感至</u> 科目代碼 <u>1203 共19</u> 頁第 <u>10頁 *請在【答案卷卡】內作答</u> For the problems from 49 to 56, choose the one alternative that best completes the statement or answers the question. 49. Which of the following is the strongest acid?										
50. The pKa of CH ₃ COOH is 4.8. If the pH of an aqueous solution of CH ₃ COOH and CH ₃ COO ⁻ is 4.8, then one knows (a)CH ₃ COOH is completely ionized (b) [CH ₃ COOH] > [CH ₃ COO ⁻]										
 (c)[CH₃COOH] = [CH₃COO⁻] (d) [CH₃COOH] < [CH₃COO⁻] (e)CH₃COOH is completely unionized 										
 trans-1-tert-butyl-3-methylcyclohexane? (a) Both groups are equatorial (b) Both groups are axial (c) The tert-butyl group is equatorial (d) The tert-butyl group is axial and the methyl group is equatorial (e) None of the above 52. Which of the following correctly describes the reaction shown ?										
$\begin{array}{rcl} CH_2=CH_2 &+ HBr \rightarrow & CH_3CH_2Br + heat \\ (a) \ \Delta H^o > 0 \ and \ \Delta S^o > 0 \\ (b) \ \Delta H^o > 0 \ and \ \Delta S^o < 0 \\ (c) \ \Delta H^o < 0 \ and \ \Delta S^o > 0 \\ (d) \ \Delta H^o < 0 \ and \ \Delta S^o < 0 \\ (e) \ \Delta H^o = \Delta S^o = 0 \end{array}$										
 3. According to the Hammond Postulate, which of the following is correct ? (a) The transition state of an endothermic reaction step will be more reactant-like than product-like (b) The intermediate of an endothermic reaction step will be more reactant-like than product-like (c) The transition state of an exothermic reaction step will be more reactant-like than product-like (d) All transition states are more product-like than reactant-like (e) None of the above 										
 54. Which of the following is the best reaction sequence to use if one wants to accomplish a Markovnikov addition of water to an alkene with minimal skeletal rearrangement ? (a) water + dilute acid (b) water + concentrated acid (c) oxymercuration -demercuration (d) hydroboration-oxidation (e) none of the above 										

	武	立	清	華	大	學	命	題	紙	
	95 學 4	手度	村科历		_系(所)		約	且碩士班入	學考試	
科目	I BE	测. 禹愈 三	科目	代碼_/20	<u>>3_共_19</u>	頁第	/之頁 *	請在【答詞	案卷卡】内	日作答
58.	Which of	the followi	ng compou	nds can re	sult in a di	sulfide bo	ond?			
59.	 (a) benz (b) adip (c) metl (d) cyst (e) tyro What is head-to-to (a) -CH (b) -CH (c) -CF (d) -CF (e) -CH 	zenesulfoni ic acid hionine eine sine the repeati tail addition $l_2CH_2CF_2C$ $l_2CF_2CH_2-$ $_2CF_2-$ $_2CF_2-$ $_2CH_2-$ l_2CH_2-	c acid ng unit if C n occurs. F ₂ -	F2=CH2 p	olymerizes	under ra	dical con	ditions? As	ssume only	7
60.	 60. Which of the following shows the correct relative reactivitites? (a) acyl chloride > acid anhydride > carboxylic acid > ester > amide (b) acyl chloride > ester > carboxylic acid > amide > acid anhydride (c) acyl chloride > acid anhydride > ester > carboxylic acid> amide (d) acid anhydride > carboxylic acid > amide > ester > acyl chloride (e) acyl chloride > carboxylic acid > amide > acid anhydride 									
61.	(a) an : (b) a ni (c) an a (d) a ka (e) an	the follow imine trile aldehyde etone amide	ing cannot l	be reduced	d by cataly	tic hydro;	genation?			

	武	立	洁	兹	*	學	命	是百	红			
	95 學年度	t.	材料所	+	条(所)	Ŧ	40	4.码上班 A	御去計			
科目	理工习	ふる三	科日人	半碼 ノン	 D3 #9	百笋	。 > 百 *	法大「你好	子う武	14- 55		
			11 11 1	(vinj _ / _ /	<u></u> <u>_</u> <u></u> <u>_</u>	_ 貝	貝	<u> </u>	《卷下】 内	作合		
62.	Which of th	ne followi	ing reagents	s will con	nvert 2-meth	nyl-2-bute	ene to or	ne equivaler	nt acetone a	ind one		
	$(a) KM = 0 \text{II}^{+}$											
	(a) KMnO ₄ , H ⁻ (b) KMnO ₄ , HO ⁻ , heat											
(c) a peroxyacid (d) (1) O_2 (2) (CH ₂) ₂ S												
(a) (1) $O_3(2)$ ($CH_3)_2S$ (e) HIO_4												
63.	Which of th	ne follow	ing bonds v	vill show	an absorpti	ion band a	at the gr	eatest wave	number?			
	(a) C=O											
	(b) O-H (c) C-O											
	(d) C-D											
	(0) 0-0											
64.	Which of th	he follow	ing molecu	les is no	t aromatic?							
	(a) cyclope	ntadiene										
	(b) cyclohe	ptatrieny	l cation									
	(c) furan											
	(d) pyrrole											
	(e) thiophe	ne										

