

								題			
	95 學年度		材料所		_系(所)			組碩士班)	入學考試		
1								*請在【答 ons is corre		內作答	
(a) If	f x = x(t)	and $y =$	$y(t), \frac{df}{dt}$	$=\frac{\partial f}{\partial x}\frac{dx}{dt}$	$+\frac{\partial f}{\partial y}\frac{dy}{dt}$						
(b) ·	$\frac{\partial f}{\partial x} = xy$	(c) $\frac{\partial}{\partial t}$	$\frac{f}{y} = x^2 - 2e$	e ^{2y}	(d) $\frac{\partial f}{\partial t} = t$	t	(e) none	of the abov	ve		
2. Sup	pose that x	x = x(u, v)	y = y(u,v)). Which	n of the foll	owing e	quations	is correct?			
(a) -	$\frac{\partial x}{\partial u} \cdot \frac{\partial u}{\partial x} = 1$	(t	$\frac{\partial x}{\partial u} \cdot \frac{\partial v}{\partial y}$	=1	(c) $\frac{\partial(x, x)}{\partial(u, x)}$	$\frac{y}{v} = \frac{\partial(z)}{\partial(z)}$	$\frac{u,v}{x,y}$				
(d)	$\frac{\partial x}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial u}{\partial x}$	$\frac{x}{v} \cdot \frac{\partial v}{\partial x} = 1$	(e)	$\frac{\partial x}{\partial u} \cdot \frac{\partial u}{\partial y}$	$+\frac{\partial x}{\partial v}\cdot\frac{\partial v}{\partial y}=$	1					
	$xy - y^3 = 1,$				1		1				
	-1 (b)	2	5		4	(e) -	$\frac{1}{5}$				
4. The	integral	$\int_{y/2}^{\pi/2} \frac{\mathrm{s}}{\mathrm{s}}$	$\frac{\ln x}{x} dx dy$	is equal	to						
(a) 2	2 (b)	1	(c) 1/2	(d) 7	τ (e)) \pi/2					
5. The	e polar	coordinat	tes (r, θ)	and	the Car	tesian	coordin	ates (x, y	v) are	related	by
	$r\cos\theta, y = CORRECT$		Which	of the	following	equation	ons for	the unit	vectors	î, ĵ, r, Ô	ÌS
(a)	$\hat{\mathbf{r}} = \cos \theta \hat{\mathbf{i}}$				$\theta \hat{\mathbf{i}} + \cos \theta$	ĵ	(c) $\frac{di}{dt}$	$\hat{\mathbf{r}}_{\underline{\partial}} = \hat{\mathbf{\theta}}$			
(d)	$\frac{d\hat{\boldsymbol{\theta}}}{d\theta} = -\hat{\mathbf{r}}$		(e) $\frac{a}{a}$	$\frac{d\hat{\mathbf{r}}}{dr} = \hat{\mathbf{\theta}}$							

			清							
	95 學年度		材料所		_系(所)		約	且碩士班》	入學考試	
6. The <i>ø</i> tl	e spherical o he angle bet	coordinat	tes (ρ, ϕ, θ) e z axis and	of a poin OP, θ t	nt <i>P</i> are de he angle b	fined by t	hat ρ is	the distan	<u>案卷卡】內伯</u> ce form origin rojection of <i>Ol</i>	O to P ,
x-y	plane. The	Jacobian	$\frac{\partial(x, y, z)}{\partial(\rho, \phi, \theta)}$	is equa	l to					
(a)	$\rho^2 \cos \phi$	(b)	$\rho^2 \sin \phi$	(c) p	$^{2}\cos\phi\sin\theta$	9 (d)	$\rho^2 \cos \phi$	$\cos \theta$	(e) $\rho^2 \sin q$	$b\cos\theta$
(a)	$\nabla \cdot (\Phi \mathbf{A}) =$	$\nabla \Phi \cdot \mathbf{A}$ -	d A,B are ⊦Φ∇·A (d) ∇×0	(b	$\nabla \times (\Phi A)$	$(\mathbf{A}) = \nabla \Phi$	$(\mathbf{A} + \mathbf{\Phi}\nabla$	×A	is INCORRE	CT?
			$z) = xy \hat{i} + y$ + z (c)					(e) :	none of the abo	ove
1			$= 2xy\mathbf{\hat{i}} + x^2$ $\leq \pi/2. \text{ The}$	7				, ,	$(1+\cos\tau)\hat{\mathbf{i}}+\mathbf{s}$	inτĵ is
(a)	2 (b)	1	(c) 0	(d) –1	(e)	-2				
		0	ned in $0 < x$ $\frac{n\pi x}{L}$. Which							
	·		$\frac{n\pi x}{L}dx$ $\frac{2n\pi x}{L}dx$					(e) none	e of the above	
dit int	fferential eq to the above	uation j e equation		v = 0, 0 < t into a S	$x < \pi$, where $x < \pi$, where $x < \pi$	nich of the	e followin tion.		: < b . For the	plied

$$\begin{array}{c} \boxed{\textbf{B} \quad \underline{x} \quad \overline{f_{1}} \quad \overline{f_{2}} \quad \overline{f_{2}}$$

Г

立清華大學命 題 紙 國 科目 理工测 箴二 科目代碼 1202 共 16 頁第 7 頁 *請在【答案卷卡】內作答 33. The direction cosines of vector $u=(u_1, u_2, u_3)$ in 3-space are defined as $l_1 \equiv \cos \alpha$, $l_2 \equiv \cos \beta$, $l_3 \equiv \cos \beta$ y, where α , β , and γ are the angles between u and the positive coordinate. For the case of u=(2,-1,5), which of the following statement is *Incorrect*? (a) $l_1 = 2/\sqrt{30}$ (b) $l_2 = -1/\sqrt{30}$ (c) $l_3 = 5/\sqrt{30}$ (d) $\alpha + \beta + \gamma = 180^{\circ}$ (e) $l_1^2 + l_2^2 + l_3^2 = 1$ for all kinds of vectors u vectors 34. Find the answer of the following linear system: $6x_1 - 2x_2 - 4x_3 + x_4 = 2$ $3x_1 - 3x_2 - 6x_3 + x_4 = -4$ $-12x_1 + 8x_2 + 21x_3 - 8x_4 = 8$ $-6x_1 - 10x_3 + 7x_4 = -43$ (a) $\frac{9}{2}$ (b)0 (c) $\frac{69}{10}$ (d) $\frac{-6}{5}$ (e)-4 The incorrect number for the solution set is (Hint: you can use either Gauss elimination or and LU Factorization) 35. The determinant of the following matrix $\begin{vmatrix} 2 & 0 & 1 & 0 \\ 0 & 3 & 1 & -1 \\ 0 & 4 & 5 & 0 \end{vmatrix}$ is (a)132, (b)-132, (c)200, (d)-200, (e) 100 (Hint: You can use co-factor expansion or/and triangularization to do so.) 36. For what value(s) of the λ parameters do(es) the following homogeneous system admit nontrivial solutions $x + y + z = \lambda x$ $\gamma + z = \lambda \gamma$ $2z = \lambda z$ (d)2 (a)-2 (b)-1 (c)1 (e)1 and 2

題 紙	組碩士班八學考試	科目 理工现1码二 科目代码 1-02 共 16 頁第 8 頁 *請在【答案卷卡】內作答 37 I se the Gram-Schimidt formula to obtain an orthonormal set from the viven linear indemendent set (1	0, 0), (1, 1, 0), (1, 1, 1). Which of the following vector(s) do(es) \underline{NOT} belong to this orthonormal set?	(e) (0, 0, 1) and (0, 1, 0)		$\begin{bmatrix} 0 & \sin \theta \\ -1 & 0 \\ 0 & \cos \theta \end{bmatrix}$			$\begin{bmatrix} 0 & 1 \\ -1 & 1 \\ 1 & 0 \end{bmatrix}$. Which one is the corresponding diagonal matrix ?	0 0 (e) none of the above
公	1	8 頁 *請	<u>NOT</u> belon			(c) $\begin{bmatrix} \cos \theta \\ 0 \\ \sin \theta \end{bmatrix}$			$(d) \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$		ie correspor	$\begin{bmatrix} -3 & 0 \\ 0 & -7 \\ 0 & 0 \end{bmatrix}$
學		ら 頁第 ent fro	rr(s) do(es)) (d) (0, 1, 0)			6 0	0 3	0 1 0 1 0 1		ch one is th	(p)
K	条(所)	er 共一	wing vecto	(c) (0, 0, 1)	IS.	$\begin{array}{ccc} \theta & 0 & \sin \theta \\ 1 & 0 & 0 \\ 0 & \cos \theta \end{array}$	$\begin{array}{ccc} 0 & \sin\theta \\ 1 & 0 \\ \theta & 0 & \cos\theta \end{array}$	rix 0 2 0 0	$(c) \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$		$\begin{bmatrix} -1\\3\\4 \end{bmatrix}$. Whi	$\begin{bmatrix} 3 & 0 \\ 0 & -7 \\ 0 & 0 \end{bmatrix}$
	所		of the follo	$\sqrt{2}/2$, $\sqrt{2}/2$) (c) (0, 0, 1)	$\begin{array}{ccc} 0 & -\sin\theta \\ 1 & 0 \\ 0 & \cos\theta \end{array}$	$ \begin{pmatrix} -\cos\theta \\ 0 \\ \sin\theta \end{pmatrix} $	(e) $\begin{bmatrix} \cos \theta \\ 0 \\ -\sin \theta \end{bmatrix}$	of the following matrix	$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$		$\begin{bmatrix} -1 & 2 \\ -1 & 3 \end{bmatrix}$	0 0 0
清	材料所	子 科	l). Which e		$\begin{bmatrix} \cos \theta \\ 0 \\ \sin \theta \end{bmatrix}$		[]		(b) $\begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix}$		n matrix A	$\begin{bmatrix} -3 & 0 \\ 0 & 7 \\ 0 & 0 \end{bmatrix}$
H	年废	王王 建小馬金 -	0), (1, 1,) (b) (0,	e matrix of	$\begin{array}{ccc} 0 & -\sin\theta \\ 1 & 0 \\ 0 & \cos\theta \end{array}$	$\begin{array}{ccc} 0 & \sin \theta \\ 1 & 0 \\ 0 & -\cos \theta \end{array}$	gonal basis	0 1 1	the above	ze the give	(q) (p)
國	95 學年度	科目 王皇工 37 Ilse the Gru	0, 0), (1, 1,	(a) (1, 0, 0) (b) (0,	38. The inverse matrix of	(a) $\begin{bmatrix} \cos \theta \\ 0 \end{bmatrix}$ $\sin \theta$	(d) $\begin{bmatrix} \cos \theta \\ 0 \\ \sin \theta \end{bmatrix}$	39. The orthogonal basis	(a) $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$	(e) none of the above	40. Diagonalize the given matrix A=	(a) $\begin{bmatrix} 3 & 0 \\ 0 & 7 \\ 0 & 0 \end{bmatrix}$

	或	立	清	華	大	學	命	題	紙	
	95 學年度		材料	沂	系(所)			組碩士班)	、學考試	
									<u> 業巻卡】內作</u> wing is correc	
C _p /	'C _v , R is the	e gas con	stant)							
	$PV^{\gamma-1} = cons$ $TV^R = cons$				constant of the above		(c) $PV^R =$	constant		
	en an ideal system?	gas unde	ergoes a re	versible	isothermal r	process	from V ₁ to	V_2 , which	is the work do	one by
	$RT\ln\frac{V_1}{V_2}$		(b) .	$RT\ln\frac{V_2}{V_1}$	_	(c) <i>I</i>	$RT\ln\frac{P_2}{P_1}$			
(d)	$RT\ln\frac{P_1V_2}{P_2V_1}$	<u>.</u> I	(e) N	one of th	he above					
(b (c (d) The entro) The entha	py (S) ha lpy (H) ł lholtz fre	as its maximas its min the energy (mum va imum v						
() () ()	a)The Gibbs b)The entro c)The entha	s free end py (S) ha lpy (H) l nholtz fre	ergy (G) ha as its maxi has its min ee energy (as its mi mum va imum v	inimum value lue.	5.	sure, the c	riterion for	equilibrium is	
	e chemical					(
(a)	$\left(\frac{\partial G}{\partial n_i}\right)_{T,V,n}$	(b) ($\left(\frac{\partial U}{\partial n_i}\right)_{T,V,n_j}$	(c) ($\left(\frac{\partial H}{\partial n_i}\right)_{T,V,n_j}$	(d) $\left(\frac{d}{d}\right)$	$\left(\frac{\partial A}{\partial n_i}\right)_{T,V,n_j}$	(e) none	of the above	

	國		材料所	華			題	-	紙
	95 學年度				《(所)		_组硯士	班入学	考試
料目_									<u>卡 內作答</u>
	-	~	of ice is 0°	C at I atm.	. When the	pressure cha	inges to 1	0 atm, 1	the melting
	nperature of		$(L) < 0^{0}$		N N 000				
`	a) 0°C			(c)		a akawa			
(0	1) Depending	3 on other	parameter	5 (6)		le above.			
52. WI	hen a three-c	omponen	t system is	in equilibri	ium (pressı	ire is fixed a	t 1 atm) v	vith zer	o degree of
fre	edom, there	must coe							
	one phase			~		c) three pha	ses		
(d)) four phases		(e) Non	e of the abo	ove.				
53. Or	ne mole of ar	ı ideal gas	A (at 1 atr	n) and one	mole of an	ideal gas B	(at 2 atm)) are mi	xed to form an
		_	-			-			uxing is given by
)-2 RT ln 2			ln 2	-	(c) -3RT ln 2			
(d)) -3RT ln 3		(e) None	e of the abo	ve.				
54. At	constant ten	aperature,	the change	e of molar (Gibbs free	energy (G) o	f a nonid	eal gas	can be described
as									
(8	a) $dG = RTd$	ln P (P is	pressure)	(b	dG = RTd	l ln V(V is v	olume)		
((c) $dG = V dP$			(d)	dG = P dV	7	(e)Non	e of abo	ove
<i></i>		1 1	1010 1 11		C	1 . 0			
	÷	÷ ,	-	-	~		÷	<u>^</u> ·	e partial pressure
					le number a	ind mole ira	ction of c	ompone	ent <i>i</i> , respectively,
	e entropy of	_		-			_		3
(4	a) $-\sum_{i} n_{i} R I$	np _i	(b) -2	$\sum_{i} n_i R \ln P_i$	(c)	$-\sum_{i}n_{i}R\ln\lambda$	ζ_i ((d) $-\sum_{i}$	$X_i R \ln X_i$
	e) None of tl			a A				3	
		10 400 00.							
	0) 110110 01 0								
((hich thermo	dynamic f	unction ha	s an absolu	te value?				
(4 56. W		-				(c) Entro	ру		
() 56. W (a	hich thermo	ergy		(b) Enthal	ру		ору		
(1 56. W (a (c	Thich thermo a) Internal en d) Gibbs free	ergy energy		(b) Enthalj (e) None c	py of the above	Э.			ΥΥ. Λ1 1 ···
(4 56. W (a (c 57. Da	Thich thermo a) Internal en d) Gibbs free uring a rever	ergy energy sible isoth	nermal com	(b) Enthalj (e) None c	py of the above	Э.		₎ to (P ₂ ,	V ₂), the change ir
(4 56. W (a (c 57. Du the	Thich thermo a) Internal en d) Gibbs free uring a rever e entropy of	ergy energy sible isoth the gas is	nermal com	(b) Enthaly (e) None of apression of	py of the above f one mole	e. ideal gas fro	om (P ₁ ,V ₁		V2), the change in None of the abov

立清華大學命 國 題 紙 95學年度 抗科所 系(所)______ 組碩士班入學考試 科目_理工观1.102 科目代碼 1202 共 16頁第 12頁 *請在【答案卷卡】內作答 58. Which statement is correct for ideal gases? (a) $\left(\frac{\partial U}{\partial V}\right)_{T} = 0$ (b) $\left(\frac{\partial H}{\partial V}\right)_{T} = 0$ (c) $\left(\frac{\partial U}{\partial T}\right)_{T} = 0$ (d) $\left(\frac{\partial H}{\partial S}\right)_{T} = 0$ (e) None of the above 59. A two- component system held at 1 atm and a certain temperature may consist of different number of phases. Which one of the following can conclude the system in equilibrium: (a) the system has one phase, (b) the system has two phase, (c) the system has three phase, (d) the system has four phase, (e) None of the above. 60. Which of the following is negative for ideal gases? (a) $\left(\frac{\partial S}{\partial T}\right)_{P}$ (b) $\left(\frac{\partial H}{\partial T}\right)_{P}$ (c) $\left(\frac{\partial G}{\partial P}\right)_{T}$ (d) $\left(\frac{\partial S}{\partial P}\right)_{T}$ (e) None of the above. **Ouestions for (61-63)** A first order phase change occurs for element A at 450 K under equilibrium conditions. The high temperature form (β) may be supercooled in a metastable state to temperature below the transformation Atomic weight=20 P=1 atm; T_{trans} =450 K, ρ^{α} =5g/cc, ρ^{β} =4g/cc temperature. ΔH_{trans} =500 Cal/mole (from α to β) $Cp^{\alpha}=6$ (Cp is valid for 250 K<T<500K, unit:cal/K-mole) $Cp^{\beta}=7$ (Cp is valid for 250 K<T<500K, unit:cal/K-mole) 61. What is the ΔG (Gibbs free energy change) at 300 K for the phase transformation from β to α ? (ln 450=6.11, ln 300=5.7) (a) 500 (b) 306 (c)-217 (d)-806 (e) -1020 cal/mole. 62. The vapor pressure of the α phase is 3×10^{-5} atm at 300 K. What is the vapor pressure of metastable β at 300 K (a) 1.23×10^{-5} atm (b) 2.11×10^{-5} atm (c) 3×10^{-5} atm (d) 1.16×10^{-4} atm (e) 1 atm 63. Which statement is correct? (a) entropy of α phase at 0K is greater than 0 (b) entropy of β phase at 0 K is greater than 0 (c) Gibbs free energy of α phase is higher than that of β phase at 500 K. (d) Gibbs free energy of α phase is higher than that of β phase at 400 K (e) slope of G (Gibbs free energy) vs T (temperature) is positive

		1							
威	立	清	華	大	學	命	題	紙	
95 學	年度	材料户	F	_系(所)	組	碩士班入	、學考試	
科目工建工	: 测藏=	科目	代碼_1-0	<u> </u>	6頁第_/	3頁 *言	青在【答	<u>案卷卡】内</u>	1作答
Questions fo	<u>r (64-65)</u>								
it is desired to	o deposit a	layer of SnO ₂	(s) by ch	emical va	por deposi	tion using	; SnBr4 (g	() and H ₂ O	(g) in
accord with t	ne reaction:	: SnBr ₄ (g)	+2H ₂ O(g	s)=SnO ₂ (s	s)+ 4HBr (g)			
The standard	Gibbs free	energy of this	s reaction	at 1000 k	K is 4600 c	al/mole.			
64. What is th	ne initial dr	iving force fo	r the reac	tion (ΔG)	for an inp	ut gas com	nposition	of 75 % Ar	carrier
gas, 10 %	H ₂ O, 10 %	% SnBr ₄ , and f	5 % HBr ((molar per	rcent), with	n a total pr	essure of	1 atm at 10)00K?
		0001=-11.51							
(a)-5490	(b)	-3210	(c) 6673	(d) 2530	(e) 1	285 (cal/	mole)	
A			• •• •						
		um constant f						(0.01 (、 、
(a) exp (-6	.375)	(b) exp (3.1	87)	(c) exp ((-4.673)	(d) 0	(e) (exp (-2.315)
<u>Ouestions fo</u>						£		The entroph	-
		mple eutectic							
-		Assuming t					s obey He	enry's law v	vitn YmgO
III CaO-0.23	and the sol	lubility of Ca	O III Mige	15 0.000	ai 2300 C	0			
66. What is t	he solubilit	y of MgO in	CaO at 23	300 °C.					
		5 (c) 0.4			(e) 0.75				
	(0) 0110		- (-	,	(0) 0002				
67. What is t	he activity	of CaO at X _C	_{aO} =0.5						
(a) 0.85	(b)0.15	(c) 0.25	5 (d)) 0.65	(e) 0.45	- >			
Question for	<u>(68)-(70)</u>								
An FCC pha	se (β) of an	element A ha	as been pr	repared by	deposition	n on an FO	CC substra	ate. The s	table forn
of A is BCC	(α) at 298]	K. Combust	tion of the	β and α	phases of A	to form	AO(s) yie	lds ∆H valu	ues at 298
K of -52.7 ar	nd -51.7 Kc	al/mole, resp	ectively.	The third	d law entro	pies are 1	2.8 and 1	2.0 cal/mol	e-K at 29
K and densit	ies are 7.6	and 7.0 g/cc f	for the β a	nd α phas	ses, respect	ively. T	he atomic	weight is	70.
Assume the	volume cha	inge is indepe	ndent of j	pressure.					
68. Assume	∆Cp=0, wh	at is the trans	ition temp	perature b	etween α a	and β at P=	=1 atm.		
(a) 1000 K	(b) 11	150 K (a	c) 925 K	(d) 1	325 K	(e) 1250) K		

國	立	清 華	大	學	命	題	紙	
95 學年,	度	材料所	余(所)		_組碩士班/	入學考試	
69. What is activ	ity of the c	科目代碼_/ a forms at 298K a (c) 1.15	ind 1 atm?		<u>4</u> 頁	*請在【答	案卷卡】内	日作答
	-	transition pressu 235 atm (c) 0			tm	(e) 25 atm		
varies with temp 1 mole of liquid	s law in dil erature as Sn and 99	tute liquid solutio $\ln \gamma^0 s_n = -840/7$ moles of liquid C e alloy formed is	C+1.58 d are mixed					
71. What is the r (a) 100 J	_	nalpy? (c) -69.8 J	(d) -37	.6 J (e) -13′	7.6 J		
72. What is the c (a) 5.22 K	0	emperature? (c) 12.51 k	(d) 2.3	3 K ((e) 0.3	7 K.		
	em Pb-Sn	exhibit regular so ~ 4, ln10~ 2.3, ln				ctivity of Pb	o is 0.055 in	a liquid
73. What is the a	activity coe	fficient of Pb?						
(a) 0.055	(b) 0.005	5 (c) 0.1	(d) 0.01	(e) 0.5	55			
	= -	mixing of the so (c) 735 J		_	-	e quasi-chen	nical model?	?
75. What is the e	entropy of	mixing of the solu	ution?					
(a) 3.65	(b) 2.73	(c) 6.82	(d)9.52	(e) 12	2.63	J/K		

í

٦

安	清	華	大	學	命	題	紙	
~	材料	沂	系(所)	約	且碩士班〉	、學考試	
emperatus utm pressu =-30500+	re at which	pure Ag ₂ temperatu s	O decomp ire depend	oses to Ag ence of sta	metal and andard Gil	d O ₂ gas w	<u>素卷卡】內</u> when heated in tion free ener	n pure
. * •	correct?							
e mole fr binary sy ne Henry' nent i ob	raction of i i	in the solu magnitud lies above s law, its a	ution and the A de of the A the Raoul activity is p	he vapor p -B attracti t's law. proportion	ressure of on is less al to its m	f pure i at t than those colar fracti	n is equal to t the temperatu e of the A-A a ton.	ire of
- ont is in								
	i correct ? β co-exist	in a solut	ion, the ch	emical por	tential of o	componen	t A is equal i	n both
	be of compa	arable ato	mic size, e	lectronega	tivity and	valency.		ne
20	re and l	re and be of compa	re and be of comparable ato	re and be of comparable atomic size, e	re and be of comparable atomic size, electronega	re and be of comparable atomic size, electronegativity and	re and be of comparable atomic size, electronegativity and valency. of an ideal solution is equal to the sum of the volumes of pure comp	

cal/mole. The related chemical reaction is: Sn (1)+SnO₂ (s) SnO (s) Eq (A) Which statement is **incorrect**?

(a) These three substances cannot co-exist at 1000 K

(b) If three substances co-exist, the standard Gibbs free energy of Eq (A) is larger than zero.

(c) If three substances co-exist, the equilibrium constant is equal to 1.

(d) These three substances can co-exist at a specific temperature.

(e) The activity of pure Sn is equal to 1.

	威	立	清	華	大	學	命	題	紙	
	95 學年/	变	材料	所	系(所)			組碩士班入	學考試	
科目_	理工汉	小頭二	科目	代碼_/	0二共 /6	/ 2_頁第_	<u></u>	請在【答	<u> 案卷卡】內伯</u>	<u>=答</u>

80. Which statement is incorrect for the quasi-chemical model of solutions?

(a) The model is applied to solutions of components which are considered to have equal molar volumes in the pure state

(b) The model is applied to solutions of components which have zero volume change on mixing.

(c) The interatomic forces are significant over a long distance.

(d) The energy of the solution is calculated by summing the atom-atom bond energy.

(e) This model describes that a sufficient condition of an ideal solution is that E_{AB} be the average of E_{AA} and E_{BB} in an A-B binary system.