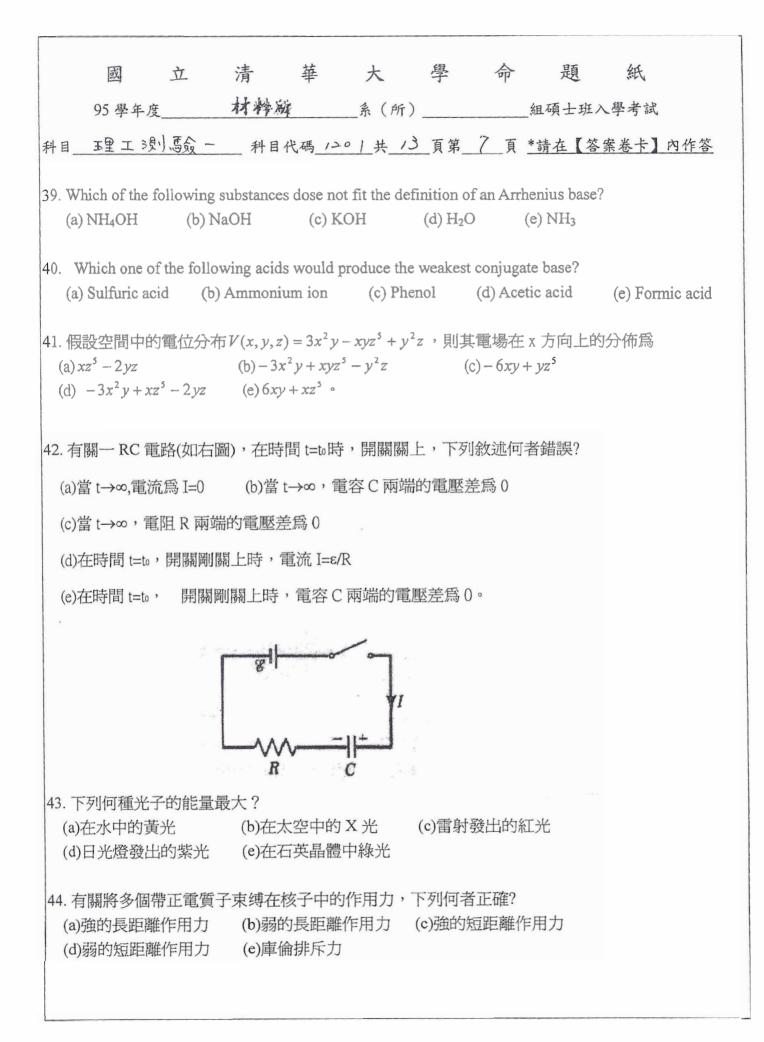
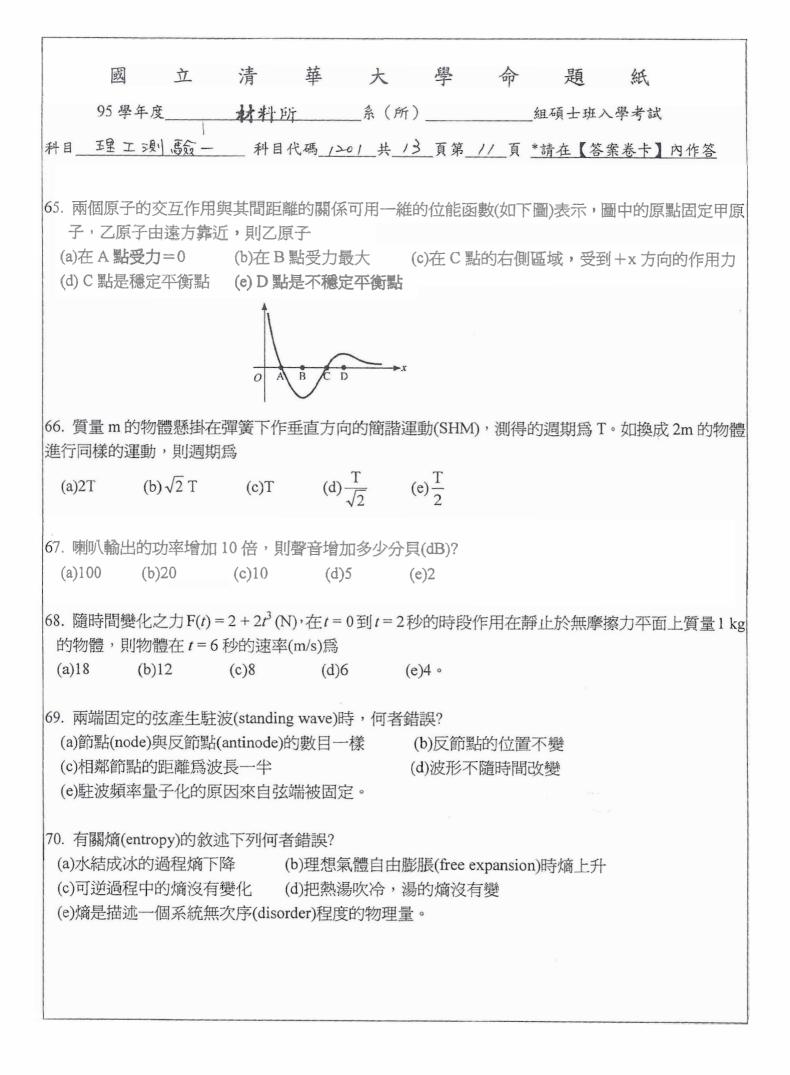
	國	立	清	華	大	學	命	題	紙		
	95 學年	度	材料		_系(所))		組碩士班)	\學考試		
1	E <u>J</u> I Sodium oxid and the Na ⁺ (a) 2	de (Na ₂ O) ions are i	crystallizes n tetrahedra	s in a struc Il holes. Th	cture in wh he number	ich the (of Na ⁺ i) ^{2–} ions ar	e in a face	-centered c		
	A material i respectively (a) an <i>n</i> -type (d) a metallic	. This ma semicond	terial would uctor	l be (b	o) a <i>p</i> -type	semicon	ductor	(c) an		0.49,	
	 Which statement about semiconductor nanoparticles such as CdSe is incorrect? (a) Band gap of the material may decrease due to quantum confinement (b) Absorption band may blue-shift (c) Emission band may blue-shift (d) Relative intensities of the peaks in the XRD pattern may be different (e) Widths of the peaks in the XRD pattern may become broader. 										
1	In which of										
1	(a) sublimati(d) crystalliz		(b) m (e) no			(0) 12	iporizatior	1			
5.	Which of the solution of .		ng coordina	tion comp	ounds will	form a	precipitate	when trea	ted with a	n aqueous	
	(a) [Cr(NH ₃) (d) Na ₃ [CrC]	-		r(NH3)Cl] 3[Cr(CN)6		(c) [C1	:(NH ₃) ₆]C	l ₃			
6.	Classify the (a) primary a (d) amino ac	amine	(b) seco	ondary am	ine	(c) te	rtiary ami	ne			
7.	Lead (II) ni ionic equat	ion for thi	s reaction?							is the net	
	(a) Pb ²⁺ (<i>aq</i>) (c) Na ⁺ (<i>aq</i>) - (e) Na ⁺ (<i>aq</i>) -	+ Cl ⁻ (<i>aq</i>)	\rightarrow NaCl(s)			,	~r	(aq) → Pb (aq́) → Na			


	國 05 舉在府		.,,	,	大 系(所)		,	題	紙	
8. An = - wh (a) h (b) h (c) T (d) h	$f \in I$: mmonia is provided and the second	渡り、 表定 repared H K (at 2 ollowing action w um, mor n of N ₂ w mation (一 科目 industrially $5 \circ C) = 4.0 \pm$ is true? ill be larger e NH ₃ is pre- vith H ₂ to fo at equilibriu	代碼 <u>/></u> by the re × 10 ⁸ . W at 500 °(esent at 5 rm amm	$2/2$ $\pm /2$ eaction N ₂ (g) when the tem C than at 25 500 °C than at conia is endo t favored as	_頁第_) + 3H ₂ () perature °C at 25 °C othermic	<u>></u> 頁 <u>*</u> g) ↔ 2NH of the rea	請在【答 H3(g) Fe	<u>案卷卡】內</u> or the reacti	on, ∆ <i>H</i> °
(a)]	H_3O^+ and O	H-		O^+ and O^+	bicarbonate CO3 ^{2–} CO3 ^{2–}				y:	
(a) (c)	ould be equa the initial pl the volume	al for bo H of NaOl	th titrations' (b) H added to r	?) the pH each equ	C ₂ H ₃ O ₂ are t at the halfwa uivalence po (e) two of	ay point int		I NaOH. W	hich of the	following
C ₂ 1. 2. 3.	₂ H ₅ OH(<i>l</i>) + C ₂ H ₄ (<i>g</i>) C(grap) C ₂ H ₄ (<i>g</i>)	$3O_2(g) - (g) + 3O_2(g)$ (hite) + 3 (hite) + 3 (g) + H ₂ O	$\rightarrow 3H_2O(l) - g) \rightarrow 2CO_2(l) + (1/2)(l) - C_2H_3O(l) - C_$	+ 2CO ₂ () (g) + 2H 2) O₂(g) - 9H(<i>l</i>)	$_2O(l)$ → C ₂ H ₅ OH(2 7) 2 2	⊥H° = −14 ⊥H° = −27 ∖H° = −44	78 kJ ł kJ	089 kJ	
(a) (c)	$O_2(g) + 2H$	$f_2(g) \rightarrow 2$ $\operatorname{ICl}(g) - $	H₂O(g) → NH₄Cl(g)		ıld ∆S° be ez (b) H2O(I) (d) 2NH4Ì	\rightarrow H ₂ C	(s)	_		

國 立	清 華	大 學	命	題	紙
95 學年度		系(所)		且碩士班入	學考試
料目 <u>当主 エ 決り 5歳</u> 13. Which metal, Al or Ni $Zn^{2^+} + 2e^- \rightarrow Zn$ E° Ni ²⁺ + 2e ⁻ → Ni E° (a) Al (b) N (d) Neither Al nor Ni work	could reduce Zn^{2+} = -0.76 V A = -0.23 V i (c) Both	to Zn(s) if placed l ³⁺ + 3e ⁻ → Al Al and Ni would	in a Zn ²⁺ (<i>aq</i> <i>E</i> ° = -1.66 work) solution?	
14. An element has the ele (a) nonmetal. (b)					le (e) metal.
 15. Which compound does (a) NaOH (b) KO (c) All of the above contained 	$C_2H_3O_2$ (c)) CH ₃ OH	(d) NH4NO3		
(mol/L) 1 6.4 × 10 2 12.8 × 1 3 6.4 × 10	NO] Initial [H ₂] (mol/L) 2.2×10^{-3} 2.2×10^{-3} 2.2×10^{-3} 2.5×10^{-3} (b) Rate = 10^{-3}	Initial Rate of (mol/L·S 2.6 × 10 1.0 × 10 5.1 × 10 k[NO] ² [H ₂]	f Disappearan 5) -5 -5	nce of NO	\rightarrow N ₂ O + H ₂ O
17. Which of the followin (a) CH_4 (b) N_2			; point? (e) He		
18. Which of the compound(a) $C_{25}H_{52}(s)$ (b) $S_8(s)$				s)	
 19. When a nonvolatile solve point, the freeze membrane (a) decreases, increases (c) increases, decreases (e) decreases, increases 	ting point, , decreases, decrea , increases, decreas	and the osmotic ses (b) incre ses (d) decre	pressure acro	oss a semip	ermeable es, increases

威	立	清	華	大	學	命	題	紙	
95 學年度	2	材料所	•	系(所)		約	硕士班入	、學考試	
科目 <u>5堂ユジ</u> 20. According to [Zn(H ₂ O) ₆] ²⁴ (a) 0 (も	crystal f	field theory,	how m		l electron				
21. When zinc rea hydrogen gas reaction. The (a) Is negative (c) Is positive	is counte work dor e on the s	racted by an ne by the our system (b)	n outsic tside fo Is posi	le force whic orce: itive on the su	h results	in a smalle ags	er volume		
 22. A piano is bro down the stain energy transfor the door? (a) Potential energy (b) Ground energies (c) Potential energies (d) Kinetic energies (e) Potential energies 	is and fin prmations energy \rightarrow hergy	ally comes s for the pian Kinetic ene Potential en Kinetic ene Potential ene	to a res no form ergy \rightarrow ergy \rightarrow ergy \rightarrow ergy \rightarrow	t by the outsi the moment Thermal ene Thermal ene Potential ene Kinetic ener	de door. it is beir rgy of the ergy \rightarrow K ergy \rightarrow T gy	Which seq ng brought e ground a linetic ene	uence bes upstairs, nd piano rgy of the	st describes to when it s piano	the tops by
 23. Which of the (a) n=7, l=7, n (d) n=3, l=-1, 24. The bind in (a) Covalent 	m _l =0 m _l =0 RbF is:	(b) n (e) n ^a	=7, 1=0 =0, 1=0), m _l =1 , m _l =0	(c) n=			netal	
 25. In a polar boom (a) spend eque (b) are localized (c) spend mone (d) spend mone (e) spend mone 	al time a red betwo re time an re time a	round both nuc cound the bi round one o	clei gger nu f the nu	iclei than the	other on	e			

				,	大					氏
95	學年度_		材料的	ŕ	_系(所)			_组碩士动	王入學才	芋試
科目	里工测	<u>馬兪</u> -	科目	代碼_120	<u>, 共 /3</u>	_頁第_	<u>5</u> 頁	*請在【	答案卷	卡)內作答
	-		1		r geometry (d) sp ²		(e) sp ³ d ²			
HCOO	H. What h	ybridiza	tion dos	e the carbo	he presence on atom hav (d) spd	ve in fo	rmic aci		oxidized	l to formic acid
	lowing methe reduc			CHO, is re	educed to (CH3CH	2 CH ₂ OH	I. What or	bital is	most probably
(a) π or	bital of o	ne of the	sp ³ carb	ons	(b) σ οι	bital of	f one of t	he sp ² car	bons	
	rbital of or bital of th		-	ons	(d) π οι	bital of	f one of t	he sp ² car	bons	
these m (a) Cov	nolecules? valent bon	d	(b) London	nteract, wh dispersion en bonding	-		olecular fo Ion-dipole		ll exist between
(b) Inc: (c) Dec (d) Con conduc	reasing the reasing the preasing the mbining two prive.	e numbe e numbe ne numb wo differ	r of atom r of vale er of vale ent semi	ns of the se nce electro ence electro conductor		emicor semico low the	nductor l	oy introdu	ction of	different atoms f different atom but less
(a) Mo	larity		(b) Mol	*		-	of a solu fraction			
		-		s would be (d) CH4 (e the most s e) C ₆ H ₆	soluble	in water	?		


	國 95 學年度	立	清 材料:	華	大 系(所)	學	命	題	紙	
	予聖 工 永小 Which of the (a) A (b) K	following	; is a hydro	ophilic vita		_頁第	6_頁*:	請在【答	寨卷卡】	內作答
	in a zero-order (a) t/M (b) 1/				-	cific rate	constant	possess?		
35.1	When a reactio (a) the molect (b) the produc (c) the reactar (d) both react (e) both react	ules are in cts are rea nts are rea ants and p	a passive octing, whi octing, whi products a	e state, ther ile the reac ile the proo re formed	tants are p ducts are p continuous	assive. assive. sly.		formed		
36.	Which of the (a) allow mor (d) add a dum	e time to	pass (b)	remove	some prod					
37.	Which of the		below hat $[A]^2[B]^2$ $[D][C]^3$		wing equili	brium ex	pression			
	(a) $2A + 2B$ (c) $A_2 + B_2$									
	(e) DC ₃		A_2B_2							
38.	For a certain (a) The reacti (b) The reacti (c) The reacti (d) The direc (e) The reacti	ion will p ion will p ion will p tion of the	roceed for roceed bac roceed aw e reaction	ward. ckward. ay from ec cannot be	quilibrium.	Ţ	expect to	happen?		

國立清華大學命題紙
95學年度系科科所系(所)组碩士班入學考試
科目_王卫汉川馬俞一科目代碼_120/共_13頁第_8頁 *請在【答案卷卡】內作答
45. 由 $E = mc^2$,下列何者的能量最大? (a)電子 (b)質子 (c)中子 (d) α 粒子 (e)氫原子。
46. 一帶+Q 導體球的半徑為 R, 下列何者為有關球心距離 r, 與電位 V 的關係
(a) (b) (c) (d) (e)
 47. 一粒子被局限在一個正方形(L³)的盒子中,若該粒子是在能量最低的狀態,請問該粒子出現在何處的可能性最大? (a)盒子的邊緣 (b)盒子的中心 (c)盒子的六個角落上 (d)距離盒子的中心 L/2 處 (e)距離盒子的邊緣 L/e 處
 48. 下列何種作法無法增加儲存在平行板電容器的能量? (a)加大平行板的面積 (b)加長平行板的距離 (c)放置介電係數大於1的材料於平行板中 (d)增加充電時的電壓 (e)增加電板的厚度。
49. 一線圈通上 6A/sec 的變化電流,產生 90V 的感應電動勢,該線圈的自感為 (a)15H (b)54mH (c)72H (d)108mH (e)4H。
50. 光柵光譜儀利用多狹縫光柵來分離不同波長的光,欲增其可分離的角度(解析力),下列何種作法 不正確?
(a)增加光栅的密度 (b)增加光強度 (c)加大光栅的面積 (d)以較大的入射角打入光線 (e)觀察高階繞射項
51. 量子物理中,一個粒子的狀態是用波函數φ(x)來表示,下列何者有關φ(x)的敘述何者正確? (a) φ(x)表示粒子在 x 處出現的機率 (b) φ(x)表示粒子在 x 處出現的機率密度
(c) $\int_{\infty}^{\infty} \phi(x) dx = 1/e$ (d) $\int_{\infty}^{\infty} \phi^2(x) dx = 1$ (e) $\phi(x)$ 必須爲實數。

	國	立	清	華	大	學	命	題	紙	
							組		學考試	
Protocolarities	理工	测高盒 -	科目/	代碼_1-20]	1_共_13	_頁第_7	頁 *訪	青在【答》	<u>案卷卡】內</u> 下列何者	
(a)	(1)	有作用力	」,只有1	可能是磁伯	七的 (b) ▲	い … ● 無作	用力,只	只有2可能是	是磁化的
(c)		「作用力,	,只有1可	能是磁化的	Ŕ	(d)	() 1) 1) 1)	王力, 只	有2可能是	磁化的
(e)	, 無法判斷						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	要多大的 24.5eV。	能量才能	將氫原子离	進子化變成	質子?(a)1	0.2eV ,	(b)3.4eV	• (c)13.6e	eV,(d)8.9e	γ,
(a)	$B_x = (E_0/c)$	sin(kx–a	成分爲 E _z = ot) i (b (e))By=Eosin((kx–wt) j			₀ /c)sin(kx	κ—ωt) j	
			電流,在出 .G (c					在 1m 處 E	的磁場爲	
			<u>佳</u> — 100u (c)							
會 (a)	得到外面 AM 無線	的訊息? 收音機	,隧道內音 (b)車_ (e)FM	上數位電視	1		市份子破场	慶,用下 3	刘哪一種工.	具最有機
58.以		電子束轟				度,偌改	30keV 的	電子束進	行實驗,其	其散射角
(a))1.5	(b)3.4	(c)6.3	(d)9.4	4 (e)17.2				

	國	立	清	華	大	學	命	題	紙	
	95 學年/	变	林料	近	系(所)	約	1碩士班/	、學考試	
科目_	理工观	1. 善愈一	科目	代碼_/:	<u>>0/ 共 /</u>	3_頁第_	10頁*	请在【答	案卷卡】內	作答
59.下	列何者不是	是馬克思」	<u></u>	well)方程	 主式?					
(a) d	$\int E \cdot dA = Q$)	(b)∮¢×	dA = 1	(c) ∫ <i>B</i>	$\cdot dA = 0$				
(d) c	$\int E \cdot dl = -\frac{1}{2}$	$\frac{d\Phi_B}{dt}$	(e) ∮ <i>B</i> · <i>a</i>	$dl = \mu_0(I)$	$+\varepsilon_0 \frac{d\Phi_E}{dt}$)				
出	端將量到的	的電壓為			輸出・若 ^ジ (d)120V			0V 接到輔	俞出端則在原	〔來的 輸
(a)1	210 V	(0)10 V	(0)1	00 v	(u)120 v	(6)2420 V °			
					察力方向為 (d)向		(e) 無 <u></u> 屢	<u></u> 疲力。		
	•	()								
(a)青		「作功	(b)向/i	心力不作	功 (度所作的,				功	
(a)Ē		」位能隨明	寺間遞減	(b)	上釋放,則 單擺的機構 單擺的角酮	戒能(mec	hanical end		間逓增	
(e)∱	乍用在擺銀	美上的拉力	力不變。				ж.			
(a)		前開始結為			在4℃最大 波努利(Be		7匯解釋			
(c)) (d)	僭艇的浮升 在地球與月	+與下潛加 引球上,4	原理是帕其 勿體在同相	所卡(Pasc 義的液體	al)原理 中所受的》	孚力相同				
(e){	出度比浟能	豆小时分初期	园 川	子刀찆役	入液體的體	豆傾無關	0			

	國	立	清	華	大	學	命	題	紙
	95 學年度	¥	材料的	Ť	_系(所))	約	碩士班入	學考試
斗目	理工测	小馬愈一	科目	代碼_1-	<u>0 </u> 共_/_	3_頁第	/_頁 *:	青在【答到	案卷卡】內作答
上	<u>=</u> = 0.5MR ² 。 氐部?	轉動慣	量相等的」	上述三個物	勿體,置方	《斜坡相同	司高度往	下滾動時,	山軸烏轉軸的轉動 哪一個先到達斜
(;	i)實心球	(b)空小	小水	(C)頁心图	社 (6	1) 问時到词	差 (e)个能比影	¢ ه
E	司重量的 A 程/小時,則 a)2 (b)	B 車與 A	車的輸出	馬力比值	直爲		到 60 公里	/小時。而	5 B 車可達到 120
	圓環形銅板第 a)內圓大小>				(c)厚度變	厚 (d)面積變;	大 (e)體積增加。
1	質量為 mı , 後,如 p 代表 a)pı > p ₂	長動量,	K 代表動能	虑,则					的力作用一段時間
(玩滾車輪遊 a)動能較大 d)衝量(impu		(b)級	象動量(lin	ear momen				大
(月球沒有大約 a)受隕石撞 d)表面沒水	掔	(b)沒有	育自轉 也球公轉減	週期太短		(c)質量過		
	下列何種因言 a)投手的臂 d)球速			與風速		(c)球面	面的粗糙程	度	

	國	立	清	華	大	學	命	題	紙	
	95 學年)	度	材料所		系(所)		約	1碩士班/	、學考試	
科目	理工限	1. 夏愈 一	科目	代碼_/_	0/共/3	頁第	13 頁 **	請在【答	案卷卡】	內作答
(1) (1) (0) (0)	加熱氦氣比; (4)氧氣是雙) (5)同溫下氧; (5)氦氣有3((5)氦氣有5((5)皆與上述; (5)皆與上述;	原子分子 氣分子的 個自由度 個自由度	平均速率		1000 K) , þ	比現象與	下列何者	無關?		
() () () ()	冬天碰觸金 a)金屬門把 b)熱在木材 c)金屬面熱 d)金屬的熱	溫度較低 內對流(c 輻射(radi 導(therm	onvection) iation)較快 al conducti	較慢 vity)較大					Ŷ	

(e)木材的熱阻(thermal resistance)較小。