	94 學年度	材料系	系	(所)_			_組碩士班入學考試
科目_	理工測驗_	三科目代碼_	1303	_共_16_	_頁第_2_	_頁	*請在試卷【答案卷】內作答
(a) (b) (c) (d) (e) 12. TI fo (a) (b)	Antiphase domain Grain size refining Residual stress and Precipertation hard Solid solution street he solubility of Callowing statement Packing factor Position shape for	or the interstitial sol	l solution and hardening g; lution streed dual stress as much gr	strengtheg; engthenings.	ning; g;		
(d	l) Slip lines in b.c.	c.c. is well defined c. is wavy nd paramagnetic tra	nsformatio	on.			
(a (b (c	a) Diffusion is alway b) Diffusion in sub c) Diffusion in sub d) Diffusion is caus	uld be made from that ays an interstitial site stitutional solid solutional solid solutional solid solutional by two or more to solve the Diffusivant	e diffusion ation is ter ation is a values atoms	n mperature vacancy n	e depent nechanism		
(1)	The Fick's Second (a) Conservation of (b) Interstitial diffus (c) Thermodynamic (d) Thermodynamic (e) Maxwell-Boltzr	sion mechanism; c first law; c second law;	d on whic	h one?			
((coefficient: a) Large grain-size b) Large grain-size c) Small grain-size d) Small grain-size	ouple provides the polycrystalline speed polycrystalline speed polycrystalline speed polycrystalline speed pecimen at low temponents.	ecimen at lecimen at l	nigh temp low temp nigh temp	perature; erature; perature;	e to	the real grain-boundary-diffusion

	94 學年度材料系	j	系(所)_		組碩士班入學	學考試
科目						
(In derivation of the critical pactonsidered: (a) Chemical free-energy chan (b) Chemical free-energy chan (c) Induced lattice strain energ (d) Chemical free-energy chan (e) Created surface free-energy	ge and Induced lat ge and Increased s y and Increased su ge and Close-pack	tice strain surface free urface free ted plane t	energy e-energy -energy factor	tion, which two	o energies should be
	What does Frank-Hertz experi (a) an elastic collision between (b) conservation of energy (c) wave-particle duality (d) existence of atomic energy (e) none of the above	n electrons and ato		o energy tran	sfer	
	Assume somebody sends an element outer space. What is the free outer space. The free outer space is the free outer space. The free outer space is the free outer space. The free outer space is the free outer space. The free outer space is the free outer space. The free outer space is the free outer space. The free outer space is the free outer space is the free outer space. The free outer space is the free outer space is the free outer space is the free outer space. The free outer space is the free outer space is the free outer space is the free outer space. The free outer space is the free outer space is the free outer space is the free outer space. The free outer space is the free outer space. The free outer space is the free outer space. The free outer space is the free outer spa	uency shift of the	EM signa	l due to gravi	ty?	
	 (a) Fine-structure induced by (b) Energy splitting of fine-structure induced magnetic field (c) frequency of Lyman series (d) selection rule Δ<i>l</i>=±1 (<i>l</i>: or (e) existence of hydrogen isof A particle of mass m and energy distance from the surface of the e⁻¹? (a) π/(2m(U0-E)) (e) none of the above 	spin-orbital interacture is $2\mu_B \mathbf{B}$ (μ is proportional to bital quantum num topes shifts the hydragy \mathbf{E} incident on the barrier to the positive spin spin spin spin spin spin spin spin	ection B: Bohr m $(1-1/n^2)$ The position of the position at which is the position of the position at which is the position of the position at which is the position of th	agnetron and mic spectral l ential barrier o	lines to longer voor to longer voor to longer void	vavelength E). What is the the particle drops by

0.00							
	94 學年度	材料系	系	(所)_		_组碩士班入學考試	
科目	理工測驗	₹三科目代碼	51303	_共_16	頁第_4頁	*請在試卷【答案卷】	內作答
S	cattered beam with	incident on a shee the largest wavel (c) 90°	ength shift?	. What i		etween the incident beam	and the
(i) (i) (i)	b) the de Broglie v	to be described by a wavelength is described to $\hbar k/c$ (key is equal to $d\omega/dk$)	ribed by h/p and a ribed wave number h/p	(h: Plancl	constant and	d p: momentum)	
(b) the tunneling processing the control of the cont	will decrease after	icle through ic oscillators proportional	a barrier o	of width <i>d</i> is	proportional to e^{-2kd}	
(a) existence of spi b) origin of "abno c) magnitude of sp d) spin quantum n	egarding to electrons is confirmed by rmal" Zeeman effection angular momentumber is 1/2 for particular is 0 for neurons.	Stern-Gerlacect ntum is $\sqrt{3}\hbar$ roton	h experin		n	
((b) The only value always equal to (c) The angular mo (d) spin magnetic of	umber s describe to s, the quantum nu	mber describ ectron spin is s always equ	oes the spi 1/2 ħ al to 1/2	in angular mo	e electron omentum of the electron. l	ts value is
	(b) A quantum stat	ns in an atom can one is described by 4 he exclusion princ	quantum nu		tum state.		

(e) in general, the electrons in a subshell remain unpaired.

	94 學年度_	材料系	<u> </u>	_系(所)		組碩士班入學	考試
科目_	理工	測驗三	斗目代碼1303	3共_16頁	第_5頁	*請在試卷【答	·案卷】內作答
ef	fective force	constant. h =6.	en vibrational ene 58×10 ⁻⁶ eV. The (c) 48000 N/r	reduced mass of	f the syster	ecule is 0.36 eV, om is 1.61×10 ⁻²⁷ kg	calculate the
28.Tl m	ne carbon mo ass is 1.14×10	noxide CO mo 0^{-26} kg. $\hbar = 1$.	elecule has the low 054×10 ⁻³⁴ Js. Fin	west rotational e	energy equ	aal to 7.61×10 ⁻²³ J	. Its reduced
			(c) 0.11 nm			.011 nm	
(a (b (c	average mo the r.m.s sp When energy molecules no limit to	eed of the idea gy is high enou number of part	of idea gas is 3k' a-gas molecule is agh, the distribution cicles per state for	(3kT/m) ^{1/2} on function of e bosons		pproaches that of th increasing ener	
						rgy occupied by e eV (e) 3.54 eV	
(1)	b) The I-V cur c)The bounda d) The respon	rve shows that rve is symmetr rry of the first l use of an electro	on in a crystal is	I reverse bias re a 1-D case occu not the same as	gimes ars at a/π (a that of a fi	a is the distance b	etween two atoms
((a) the drift veb) the resistive) both electrod) The sign of dominated	rity is inversely ons and holes if the Hall mean carrier	on is typically high proportional to the semiconductors	the mean free pass contribute to the iconductors can	ath he conduc not detern		the type of the
1							

94 學年度_____材料系_____系(所)_____组碩士班入學考試

- 33. Find the value of i_x .
 - (a) 6.4A
- (b) 7.4A
- (c) 8.4A
- (d) 9.4A
- (e) 10.4A

- 34. Find the equivalent inductance for the series-parallel combinations shown in below.
 - (a) 1.158H
- (b) 2.158H
- (c) 3.158H
- (d) 4.158H
- (e) 5.158H

- 35. Find the steady-state value of i_3 for the circuit shown in below.
 - (a) 1A (b) 2A (c) 3A (d) 4A (e) 5A

36. Find the closest value of current "I" for the circuits in the following figure assuming that the diodes are ideal. (a) 1 mA (b) 2 mA (c) 3 mA (d) 4 mA (e) 5 mA

Figure for problem 41

Figure for problem 42

- 42. Consider the circuit shown in figure. Assume the capacitor is large enough so that the voltage across it does not discharge through R appreciably during one cycle of input. What is the steady-state output voltage $v_{out}(t)$ (in volts) if $v_{in}(t) = 4\sin(\omega t)$. The reverse breakdown voltage of the Zener diode is shown. Allow a 0.6-V forward drop for the diodes.
 - (a) $4\sin(\omega t)$
- (b) $4\sin(\omega t) + 6$
- (c) 5.4
- (d) 6 (e) $4\sin(\omega t) + 2$
- 43. For the circuit shown in figure, let the transistor have $\beta = 100$ and neglect the effect of r_o . Use $V_{BE} = 0.7 \text{ V}$ and assume all capacitances are infinite. What is the dc Q-point collector current I_{CQ} ?
 - (a) 4.3 mA
- (b) 4.1 mA
- (c) 4.8 mA
- (d) 7.5 mA
- (e) $5.0 \, \text{mA}$

Figure for problems 43-44

- 44. As in the problem 43, find the value of small-signal voltage gain $A_v = v_o/v_s$.
 - (a) -158.4
- (b) -79.2
- (c) -66.6
- (d) -48.4
- 45. For the circuit shown in figure, the n-channel depletion FET has $V_{to} = -4 \text{ V}$ and $I_{DSS} = 10 \text{ mA}$. values of I_{DQ} and V_{DSQ} , assuming all capacitances are infinite.
 - (a) 6 mA; 4 V (b) 5 mA; 5 V (c) 10 mA; 0 V (d) 2.55 mA; 7.45 V (e) 7.85 mA; 2.15 V.

Figure for problems 45-46

	*						
	94 學年度	材料系		系(所)_		組碩士班入學考試	J
科目						*請在試卷【答案》	
	For the circuit show voltage gain $A_v = v_o/v_o$ (a) 2.5 (b) -2.0	v_{in} , assuming r_a	$= 2 k\Omega$ and	l all capacit	ances are in	= -2 V and $I_{DSS} = 5$ finite.	mA. Find the
1	Assume the OP amp (in volts).	in the circuit, a	s shown in	figure, is id	eal. Analy	ze the circuits to find	the values of v_0
	(a) -8 (b) -2	(c) 0	(d) -4	(e) 2			
	2 mA	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	kΩ	+ v _o — =	1 kΩ		
			Figure for	problem 4	7		
48.	Two amplifiers with Amplifier 1: A_{vo1} Amplifier 2: A_{vo2} Find the open-circuit (a) 200 (b) 32	= 12, $R_{i1} = 1 \text{ kg}$ = 20, $R_{i2} = 2 \text{ kg}$ t voltage gain of	$R_{o1} = 100$ $R_{o2} = 200$	Ω Ω		order of 2, 1.	
49	. Which of the follow	ing covalent bo	nds has the	largest dip	ole moment	?	
	(a) C-C	С-Н (с)	C-O ((d) H-N	(e) H-F		
50						psed and staggered for	ms of ethane?
	The	_form has the	nost	SU	rain.		

(a) eclipsed; steric (b) eclipsed; torsional (c) staggered; steric

(d) staggered; torsional (e) none of the above

	94 學年度材料系系(所)组碩士班入學考試	
科目	理工測驗三科目代碼1303共_16頁第_10頁 *請在試卷【答案卷】	】內作答
51. V	nich of the following is the best reaction sequence to use if one wants to accomplish a Markov	nikov
a	lition of water to an alkene with minimal skeletal rearrangement?	
(water + dilute acid (b) water + concentrated acid	
(oxymercuration-demercuration (d) hydroboration-oxidation	
(none of the above	
52. V	hich of the following alcohols will react most rapidly with the Lucas reagent (HCl, ZnCl ₂)?	
($(CH_3)_3COH$ (b) $CH_3CH_2CH_2CH_2OH$ (c) $CH_3CHOHCH_2CH_3$	
($(CH_3)_2CHCH_2OH$ (e) none of the above	
53.	hich of the following is the strongest acid?	
(CH_3NH (b) CH_3OH (c) CH_3SH (d) CH_3OCH_3 (e) CH_3Cl	
54.	electrophilic aromatic substitution reactions a chlorine substituent:	
) is a deactivator and a m-director.	
) is a deactivator and an o,p-director.	
) is an activator and a m-director.	
) is an activator and an o,p-director.	
) none of the above.	
55.	hat alkene would you treat with RCO ₃ H in order to obtain the compound below and its enanti	omer?
	$H_3C_{M_{M_2}}$ O MH	
	H_3 CH ₂ C CH ₃	
	(b) (E)-2-methyl-2-pentene	
	c) (Z)- 3-methyl-2-pentene (d) (E)- 3-methyl-2-pentene	
	e) 3-methyl-1-pentene	

	94 學年度	材料系	系	(所)_		组碩士班	入學考試
科目	理工測縣		1303	_共_16_	_頁第_11	頁 *請在試	卷【答案卷】內作答
		ounds below undergo					
(:	a) cyclohexyl broi	mide (b) meth	yl iodide	(c)	isopropyl o	chloride	
(d) 3-chloropentan	e (e) 3-iod	o-3-methy	lpentane			
57. V	Which of the mole	cule will be appeared	as an ioni	c form at	pH 2.0?		
	(a) acetone(d) lysine	(b) benzaldehyde(e) cysteine	(c) glu	utamate			
58. V	Which of the follo	wing serves as the be	st dienoph	ile in a D	oiels-Alder	reaction?	
		$CH_3)_2$ (b) CH_2					
	(d) $CH_2=CH-O-$	$\cdot \text{CH}_3$ (e) CH_2	$=CH_2$				
59. V	Which would you	expect to absorb UV	energy at t	he longe	st waveleng	gth?	
	(a) isoprene						
	(d) ethane	(e) beta-carotene					
60. '	Which proton(s) a	re usually responsible	e for a peal	k in the p	roton NMR	spectrum bet	ween delta 9 and 10?.
	(a) the ring prot	ons of an aromatic al					
		protons of a ketone					
		on the alpha-carbon of a conjugation.					
	(e) the –CH=O	-	gaicu aiuci	iyuc oi k	ctone		
61.		ful for converting a te	rminal alky	yne to an	aldehyde o	f the same car	bon content?
	(a) H ₂ O and a tr (b).O ₃ and then						
	, ,	on with disiamylbora	ne, then hy	drogen p	eroxide ox	idation	
		chlorochromate (a co					
	(e) Hg^{2+} , H_2SO	4, H ₂ O.					
62.	What is the produ	ct of the most commo	on mode of	f fragmer	ntation of a	carboxylic aci	d in mass spectrometry?
	(a) a cycloalka	ne (b) an alkene	(c)	an alkyr	e (d)	an alcohol	(e) an aldehyde
63	Which of the follo	owing compounds is	a <i>meso</i> con	npound?			
35.		chlorocyclopropane			hloro-2-bro	mocyclopropa	nne
		llorocyclopropane	(0	l) trans-1	-chloro-2-l	promocyclopro	ppane
	(e) 1,1-dichloro	ocyclopropane					

		3.	(41)	組碩士班入學>	去計
94 學年度	材料系		(所)		7 00

科目代碼___1303___共_16__頁第_12__頁 *請在試卷【答案卷】內作答

- 64. In what way do thymine and uracil differ in their molecular structures?
 - (a) Uracil contains an additional double bond in its ring
 - (b) Thymine contains an additional methyl group
 - (c) Thymine contains an additional methylene group
 - (d) Uracil contains an additional nitrogen atom in its ring
 - (e) Thymine contains an additional carbonyl group
- 65. A 150-kg crate is supported by the following rope-and-pulley arrangements as shown. Determine the tensions T_1 and T_2 in the rope.

(a)
$$T_1 = 150 \text{ N}$$
,

$$T_2 = 150 \text{ N}$$

(c)
$$T_1$$
=1471.5 N, T_2 =367.9 N

$$T_2 = 367.9 \text{ N}$$

(e)
$$T_1$$
=490.5 N,

$$T_2 = 367.9 \text{ N}$$

(b)
$$T_1 = 50 \text{ N}$$
,

$$\Gamma_1 = 490.5 \text{ N}.$$

$$T_2=37.5 \text{ N}$$

(d) T_1 =490.5 N, T_2 =490.5 N

66. Horizontal and vertical links are hinged to a wheel, and forces are applied to the links as shown. Knowing that a = 3 m, determine the value of P.

(a)P=100 N,

- (b) P=200 N
- (c) P=267 N
- (d) P=300 N (e) P=333 N.

67. For a beam and loading shown, determine the maximum absolute values of the shear V_{max} and bending moment M_{max}.

- (a) $V_{max}=M_0/L$,
- $M_{\text{max}}=M_0/2$
- (b) $V_{max}=0.5M_0/L$, $M_{max}=M_0/2$

- (c) $V_{max}=M_0/L$,
- $M_{\text{max}} = M_0$
- (d) $V_{max}=0.5M_0/L$, $M_{max}=M_0$

- (e) $V_{\text{max}} = M_0/L$,
- $M_{\text{max}}=2M_0$

68. The centroid of the quarter-circular area (\bar{x}, \bar{y}) is

- (a) $(\bar{x}, \bar{y}) = (\frac{4r}{3\pi}, \frac{4r}{3\pi})$ (b) $(\bar{x}, \bar{y}) = (\frac{3r}{4\pi}, \frac{3r}{4\pi})$ (c) $(\bar{x}, \bar{y}) = (\frac{3r}{2\pi}, \frac{3r}{2\pi})$
- (d) $(\bar{x}, \bar{y}) = (\frac{4r}{3\pi}, \frac{3r}{4\pi})$ (e) $(\bar{x}, \bar{y}) = (\frac{2r}{3\pi}, \frac{2r}{3\pi})$

69. Determine the magnitude of the force in member AD of the truss shown.

- (a) F_{AD} =4.5 kN (b) F_{AD} =6.75 kN (c) F_{AD} =9.0 kN (d) F_{AD} =11.25 kN (e) F_{AD} =13.5 kN

94 學年度	材料系	
94 字平层	か か	

_____理工測驗三_____科目代碼____1303____共_16__頁第_14__頁 *請在試卷【答案卷】內作答

70. Determine the moment of inertia of a slender rod of length L and mass m with respect to an axis which is perpendicular to the rod and passes through one end of the rod.

(a)
$$I_{v} = mL^{2}$$

(b)
$$I_{yy} = \frac{1}{2} mL^2$$

(c)
$$I_v = \frac{1}{3} mL^2$$

(d)
$$I_y = \frac{1}{4} mL^2$$

(a)
$$I_y = mL^2$$
 (b) $I_y = \frac{1}{2}mL^2$ (c) $I_y = \frac{1}{3}mL^2$ (d) $I_y = \frac{1}{4}mL^2$ (e) $I_y = \frac{1}{12}mL^2$

71~72. A 450 N vertical force is applied to the end of a lever which is attached to a shaft at O as shown.

71. Determine the horizontal force \mathbf{F} applied at A which creates the same moment about O.

(a)
$$\mathbf{F}=135 \text{ N} \rightarrow$$

(b)
$$\mathbf{F}=135 \, \mathbf{N} \leftarrow$$

(c)
$$\mathbf{F}=260 \text{ N} \rightarrow$$

(d)
$$\mathbf{F}=260 \, \mathbf{N} \leftarrow$$

(e)
$$F=300 N \rightarrow$$

72. Determine the magnitude of the smallest force $|\mathbf{F}|$ applied at A which creates the same moment about O.

- (a) |F| = 135 N
- (b) $|\mathbf{F}| = 260 \text{ N}$ (c) $|\mathbf{F}| = 300 \text{ N}$ (d) $|\mathbf{F}| = 450 \text{ N}$ (e) $|\mathbf{F}| = 225 \text{ N}$

73. Find the polar moment of inertia of a circle (with the radius of r) with respect to any point on its circumference.

- (a) $\pi r^4/2$
- (b) πr^4 (c) $3\pi r^4/2$ (d) $2\pi r^4/2$ (e) $5\pi r^4/2$

	94 學年度材	料系	系	:(所)_		組	碩士班入學	學考試	
斗目_	理工測驗三	科目代碼	_1303	_共_16_	_頁第_15_	_頁 *:	請在試卷	【答案卷】	內作答

- 74. Select the wrong statement listed in the following
 - (a) Factor of safety = Required strength/Actual strength,
 - (b) Margin of safety = (Actual strength Required strength) /Required strength,
 - (c) Allowable stress based on yield strength= Yield strength/Factor of safety,
 - (d) Allowable load = (Allowable stress) x (Area),
 - (e) Ductile metal such as steel have proportional limits in compression very close to those in tension.
- 75. Select the wrong statement listed in the following:
 - (a) No stress can be developed in the statically determinate truss, as shown, when it is subjected to a uniform temperature ($\Delta T_1 = \Delta T_2$) change in each member,
 - (b) No stress can be developed in the statically determinate truss, as shown, when it is subjected to a non-uniform temperature $(\Delta T_1 \neq \Delta T_2)$ change in each member,
 - (c) No stress can be developed in the statically determinate truss which composed by two different members, as shown, when it is subjected to a uniform temperature ($\Delta T_1 = \Delta T_2$) change in each member,
 - (d) No stress can be developed in the statically determinate truss which composed by two different members, as shown, when it is subjected to a non-uniform temperature ($\Delta T_1 \neq \Delta T_2$) change in each member,
 - (e) None of the above

Figure for Problem 75

- 76. For a circular bar(homogeneous and isotropic) in torsion and it follows Hooke's law, which statement listed in the following is wrong:
 - (a) The maximum shear stress occurs on the surface of the bar,
 - (b) The shear stress within the bar vary linearly with the distance from the center of the bar,
 - (c) The shear stresses acting on a cross-sectional plane are accompanied by shear stresses of the same magnitude acting on longitudinal planes,
 - (d) The maximum shear stress is proportional to the applied torque T and inversely proportional to the moment of inertial,
 - (e) Circular tubes are more efficient than solid bars in resisting torsional loads.

- 190
94 學年度材料系系(所)组碩士班入學考試
斗目理工測驗三科目代碼1303共_16頁第_16頁 *請在試卷【答案卷】內作答
7~78 For the beam with overhangs, as shown, subjected to two loads, one downward and the other upward.
P
$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$
77. Determine the shear force V at the midpoint of the beam (a) $P(1 + 2b/L)$ (b) $2P(1 + b/L)$ (c) $P(1+b/L)/2$ (d) $2Pb/L$ (e) $(P + 1)b/L$
78. Determine the bending moment M at the midpoint of the beam (a) -PL/2 (b) 0 (c) PL/16 (d) PL/4 (e) PL/2
79.~80. At a point on the surface of a pressurized cylinder, the material is subjected to a biaxial stresses $\sigma_x = 90$ MPa and $\sigma_y = 20$ MPa.
79. The normal stress acting on an element inclined at an angle $\theta = 30^{\circ}$. (a) 60 MPa (b) 72.5MPa (c) 85 MPa (d) 100 MPa (e) 110 MPa
80. The shear stress acting on an element inclined at an angle $\theta = 30^{\circ}$ (select the closer one) (a) 0 MPa (b) 20 MPa (c) 30 MPa (d) -20 MPa (e) -30 MPa