	國 立 清 華 大 學 命 題 紙
	九十二學年度材料科學工程學系碩士班研究生招生考試
	科目 <u>理工學力測驗一科號 1101</u> 共 10 頁第 1 頁
	單選題,以 2B 鉛筆劃在答案卡上;答對一題得 1 分,答錯一題倒扣 0.25 分,未答不計分。
	普通物理
	1.在警匪追逐戰中,歹徒搭乘平台火車企圖逃跑,假設平台車質量為 200 kg,原始速度為 3 m/s。一名英 勇的警察(其質量約為 50 kg),從垂直方向跳上平台車,想要逮住歹徒。在他跳上平台車之後,車速為 ————————————————————————————————————
	2.在地球上空有很多太空垃圾。有一天,大雄觀察兩塊太空垃圾分別以 R 和 4R(距地心距離)軌道繞地球運行,那麼在雷達螢幕上,他們的速度分別為 v 和v。
	(A)4 (B)2 (C)1 (D) $\frac{1}{2}$ (E) $\frac{1}{4}$
	3.有一天小叮噹和大雄坐上時光旅行機去玩。小叮噹注意到在靜止時鉛直的擺錘,因爲加速度而和鉛直線成30°角。他考大雄這時旅行機的加速度爲×g(g是重力加速度)。
	(A)1 (B) $\frac{1}{2}$ (C) $\frac{1}{\sqrt{3}}$ (D) $\frac{\sqrt{3}}{2}$ (E)2
	4.宜靜有一次把一定量的理想氣體,從 0℃加溫至 273℃,同時發現氣體體積從 0.1m³增加至 0.2m³。所以聰明的宜靜會記下 (A)壓力增加 (B)壓力減小 (C)密度增加 (D)密度減小 (E)資料不足,無從判斷
	5.大雄正在研究一塊隔熱磚的熱傳導,他發現熱流傳導速率是 J。如果是另一塊厚度加倍,面積減半的相同隔熱磚,其兩面溫差亦加倍的惰形下,熱流傳導速率會是J。
	(A)2 (B)1 (C) $\frac{1}{2}$ (D)8 (E) $\frac{1}{8}$
	6.宜靜正在教大雄比熱的問題,她問道:莫耳理想雙原子氣體,在固定壓力下的比熱爲何?大雄該回答 R(R 是理想氣體常數)才不致顯得很呆?
	$(A)\frac{7}{2}$ $(B)\frac{5}{2}$ $(C)\frac{3}{2}$ $(D)4$ $(E)2$
	7.大雄在車庫裏修車子,發現引擎說明書描述其工作溫度是在 100℃及 0℃之間。假設引擎設計者想要儘可能提高引擎效能,那大概效能值約爲%。 (A)70 (B)60 (C)45 (D)25 (E)10
	8.在新竹火車站等車時,小叮噹對於火車啟動時輸子吱吱作響很有興趣。請問火車正要啟動時,車輪與 軌道接觸點的對地速度是 (A)向前 (B)向後 (C)向左上 (D)向右上 (E)零
	9.宜靜在一光滑斜面上(傾角爲 30°)測量一木塊作簡諧運動的週期。木塊質量爲 M,彈簧的彈性係數爲 K

九十二學年度材料科學工程學系碩士班研究生招生考試 科目 理工學力測驗一 科號 1101 共 10 頁第 2 頁 單選題,以2B鉛筆劃在答案卡上;答對一題得1分,答錯一題倒扣0.25分,未答不計分。 ,宜靜量到的運動週期 $T = \underline{\hspace{1cm}} \times 2\pi \sqrt{M_K}$ (A) $\sqrt{3}$ (B) $\sqrt{3}/2$ (C)2 (D) $\frac{1}{2}$ (E)1 10. 宜靜有一天偷看大雄上課筆記,發現大雄筆記裏對重力質量的描述錯誤百出。下列為筆記片段,你 能指出那一段是正確的嗎? (A)在太空中,重力質量會變得很小 (B)根據相對論,重力質量是不隨運動狀態改變的 (C)愛因斯坦說,重力質量就是慣性質量 (D)當一個物體離宇宙其它物體們都很遠時,其重力質量為零 (E)我大概睡著了,上面抄的都是錯的 11. The high boiling point of water in comparison to H2S is best explained by the concept of (A) London forces (B) dipole-dipole interactions (C) polarizability (D) hydrogen bonding (E) none of the above

(E) none of the above.

普通化學

12. Which of the following has a dipole moment?

compounds. (A) zinc

(E) none of the above.

(A) SO_3 (B) CF_4 (C) CO_2 (D) SO_2 (E) none of the above.

17. Which of the following reactions has a negative change in entropy?

What is the standard enthalpy (kJ/mol) of formation for nitric oxide, NO?

(A) 10.3 (B) 3.1 (C) 5.15 (D) -20.6 (E) none of the above.

(A) 1 (B) 1.25 (C) 1.67 (D) 1.5 (E) none of the above.

(D) $2NH_{3(g)} \rightarrow N_{2(g)} + 3H_{2(g)}$ (E) none of the above.

What is the bond order of the carbon-carbon bond?

15. Under which condition is a reaction always in equilibrium?

16. A chemical reaction will always be spontaneous when

13. Which of the following transition elements is most likely to exhibit a +3 oxidation number in its

14. Rust is formed by the action of water and oxygen on iron. The formula for rust is

(A) $\triangle G = 0$ (B) $\triangle H = 0$ (C) $\triangle S = 0$ (D) $\triangle H = \triangle S$ (E) none of the above.

(A) FeO (B) Fe_2O_3 (C) $Fe_2O_3 \cdot H_2O$ (D) FeO_2 (E) none of the above.

(B) cadmium (C) copper (D) manganese

(A) $\triangle H = -$ and $\triangle S = -$ (B) $\triangle H = +$ and $\triangle S = +$ (C) $\triangle G = +$ (D) $\triangle H = -$ and $\triangle S = +$

(A) $CaCO_{3(s)} \rightarrow CaO_{(s)} + CO_{2(g)}$ (B) $2HgO_{(s)} \rightarrow 2Hg_{(l)} + O_{2(g)}$ (C) $5H_{2(g)} + 4C_{(s)} \rightarrow C_4H_{10(g)}$

 $18. \ \, \text{Given:} \ \, N_{2(g)} + 2O_{2(g)} \rightarrow 2 \ \, \text{NO}_{2(g)} \ \, \triangle H^0 = 3.6 \ \, \text{kJ/mol} \quad \text{and} \quad 2NO_{(g)} + O_{2(g)} \rightarrow 2NO_{2(g)} \ \, \triangle H^0 = -6.7 \ \, \text{kJ/mol}.$

19. Draw the lewis structure for benzene, C_6H_6 (the carbons should be connected in a six-membered ring).

20. Consider the reaction, $CaC_2 + water \rightarrow products$. Which of the following is a product?

(A) Ca (B) CH_4 (C) acetylene $HC \equiv CH$ (D) H_2 (E) none of the above.

科目 理工學力測驗一 科號 1101 共 10 頁第 3 頁

單選題,以 2B 鉛筆劃在答案卡上;答對一題得1分,答錯一題倒扣 0.25 分,未答不計分。

工程數學

21. Which of the following equations is INCORRECT?

(A)
$$f(x, y) = x \sin y$$
, then $\frac{\partial f}{\partial x} = \sin y$

(B)
$$f = f(x, y, t)$$
 and $x = x(t)$, $y = y(t)$, then $\frac{df}{dt} = \frac{\partial f}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dt} + \frac{\partial f}{\partial t}$

(C)
$$x = x(u,v), y = y(u,v)$$
, then $\frac{\partial(x,y)}{\partial(u,v)} \cdot \frac{\partial(u,v)}{\partial(x,y)} = 1$

(D) a, b are constants, then
$$\frac{d}{dt} \int_a^b f(x,t) dx = \int_a^b \frac{\partial}{\partial t} f(x,t) dx$$

- (E) none of the above
- 22. Which of the following vectors is normal to the surface $2x^2 + y^2 + z^2 = 15$ at (-1, 2, -3)?

(A)
$$-\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$$
 (B) $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} - 3\hat{\mathbf{k}}$ (C) $2\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ (D) $2\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + 3\hat{\mathbf{k}}$ (E) $-2\hat{\mathbf{i}} + \hat{\mathbf{j}} - 3\hat{\mathbf{k}}$

23. The length $s(\tau)$ of the curve $\mathbf{R}(\tau) = \sin \tau \,\hat{\mathbf{i}} - \sqrt{3}\sin \tau \,\hat{\mathbf{j}} - 2\cos \tau \,\hat{\mathbf{k}}$, $0 \le \tau$ is equal to

(A)
$$\tau$$
 (B) 2τ (C) 3τ (D) 4τ (E) 8τ .

24. The integral $\iint_R |xy| dxdy$ in the region R defined $0 \le x^2 + y^2 \le 1$ is equal to

(A) 1 (B)
$$\frac{1}{2}$$
 (C) 2 (D) $\frac{1}{4}$ (E) 4

25. The spherical coordinates (ρ, ϕ, θ) and the Cartesian coordinates (x, y, z) are related by $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \theta$, $z = \rho \cos \phi$, then the Jacobian $\frac{\partial(\rho, \phi, \theta)}{\partial(x, y, z)}$ is equal to

(A)
$$\frac{1}{\rho^2 \cos \theta}$$
 (B) $\frac{1}{\rho^2 \cos \phi}$ (C) $\frac{1}{\rho^2 \sin \phi}$ (D) $\frac{1}{\rho^2 \sin \theta}$ (E) none of the above

26. A vector field $\mathbf{A}(x, y, z) = xy\hat{\mathbf{i}} + yz\hat{\mathbf{j}} - xy^2\hat{\mathbf{k}}$, then $\nabla \cdot \mathbf{A}$ is equal to

(A)
$$y+z$$
 (B) $x+y$ (C) $y+xz$ (D) $y+z-2xy$ (E) $2y-z$

27. If U is a scalar field, A, B are vector fields, dv the volume element, and da the area element, which of the following equations is INCORRECT?

(A)
$$\nabla \times (\mathbf{A} \times \mathbf{B}) = \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A})$$
 (B) $\nabla \times (U\mathbf{A}) = \nabla U \times \mathbf{A} + U\nabla \times \mathbf{A}$

(C)
$$\nabla \times \nabla U = \mathbf{0}$$
 (D) $\int (\nabla \cdot \mathbf{A}) dv = \oint \mathbf{A} \cdot d\mathbf{a}$ (E) $\int (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \oint \mathbf{A} \cdot d\mathbf{s}$

科目 理工學力測驗一 科號 1101 共 10 頁第 4 頁

單選題,以2B鉛筆劃在答案卡上;答對一題得1分,答錯一題倒扣0.25分,未答不計分。

- 28. The Sturm-Liouville equation has the form $[p(x)y']' + q(x)y + \lambda w(x)y = 0$, (a < x < b). For the differential equation $y'' 2y' + \lambda y = 0$, $(0 < x < \pi)$, which of the following function, when multiplied into the above equation, can turn it into a Sturm-Liouville equation.
 - (A) x (B) -x (C) e^x (D) e^{-x} (E) e^{-2x}
- 29. The Fourier transform of a function f(x) is defined by $F\{f(x)\} = \int_{-\infty}^{\infty} f(x)e^{-i\omega x} dx$. If H(x) is the

Heaviside step function and a > 0, $F\{H(x) e^{-ax}\}$ is equal to

(A)
$$\frac{1}{a+i\omega}$$
 (B) $\frac{1}{a-i\omega}$ (C) $\frac{2}{a+i\omega}$ (D) $\frac{2}{a-i\omega}$ (E) $\frac{2}{a+i\omega}$

30. It is known that $\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi}$, then $F\{e^{-ax^2}\}$ (a > 0) is equal to

(E) 0

(A) $\sqrt{\frac{\pi}{a}}e^{\frac{\omega^2}{4a}}$ (B) $\sqrt{\frac{\pi}{a}}e^{-\frac{\omega^2}{4a}}$ (C) $\frac{\sqrt{\pi}}{a}e^{\frac{\omega^2}{4a^2}}$ (D) $\frac{\sqrt{\pi}}{a}e^{-\frac{\omega^2}{4a^2}}$ (E) $\frac{\sqrt{\pi}}{a}e^{\frac{a^2\omega^2}{4a}}$

應用電子學

- 31. If we wish to supply 0.5 mW of power to the 15 k Ω load, $R_F = ?(k\Omega)$
 - (A) 0 (B) 10 (C) $5(30)^{1/2}$ (D) $10(30)^{1/2}$ (E)15
- 32. Find k in the voltage transfer function v2=kv1

 $(A) -1 \quad (B) -2 \quad (C) 1 \quad (D) 2$

33. Use superposition to find $v_{g1}(V)$.

科目 理工學力測驗一 科號 1101 共 10 頁第 5 頁

單選題,以2B鉛筆劃在答案卡上;答對一題得1分,答錯一題倒扣0.25分,未答不計分。

34. Find V1(V) in dc steady state.

(A) 0 (B) 12 (C) 24 (D) 48 (E) 96

35. Follow problem 34, Find V2(V) in dc steady state

- (A) 0 (B) 12 (C) 24 (D) 48
- (E) 96

36. The circuit is in dc steady state at t=0, find v(0-)=?(V)

- (A) 18
- (B) 12
- (C) 6
- (D) 3
- (E) 0

37. Follow problem 36, find v(0+) = ?(V)

- (A) 18
- (B) 12 (C) 6
- (D) 3
- (E) 0

38. Follow problem 36, find i(0-) = ?(A)

- (A) 18
- (B) 12
 - (C) 6
- (D) 3
- (E) 0

39. Follow problem 36, find i(0+) = ?(A)

- (A) 18
- (B) 12
- (C) 6
- (D) 3
- (E) 0

- (A) 0

- (B) 4V (C) 8V (D) 12V (E) 16V

熱力學

- 41. A special catalyst is able to decompose water into hydrogen and oxygen completely at 30°C. How many liters of gas can be produced by decomposing 18 g (≅25 liter) of water?

- (A) 25, (B) 50, (C) 62.5, (D) 75, (E) none of the above.
- 42. Indicate the wrong statement for the definition of isolated system in the following
 - (A) no heat entering from outside (Q=0), (B) no work done by the system (W=0),
- - (C) no expansion or contraction of the system, (D) no energy exchanged with the surroundings,
 - (E) no energy interchanged in the system.
- 43. Indicate the wrong statement for the definition of closed system in the following (A) heat can enter the system $(Q\neq 0)$, (B) work can be done by the system $(W\neq 0)$, (C) no mass enters or leaves the system,
 - (D) the volume of the system is constant, (E) energy can be interchanged in the system.
- 44. Please indicate the right statement for the 3rd law of thermodynamics: (A) the entropy of all perfect pure crystalline substances is zero, (B) the entropy of each element in some perfect crystalline state is taken as
 - zero, (C) ΔS for any isothermal process is zero at 0°K, (D) the internal energy of each element is taken
 - as zero, (E) none of the above.

科目 理工學力測驗一 科號 1101 共 10 頁第 6 頁

單選題,以 2B 鉛筆劃在答案卡上;答對一題得 1 分,答錯一題倒扣 0.25 分,未答不計分。

- 45. Indicate the wrong statement for the properties of ideal gas: (A) no intermolecular interactions,
 - (B) internal energy depends only on the temperature, (C) internal energy does not depend on volume,
 - (D) internal energy does not depend on pressure,
 - (E) no heat needed in an isothermal reversible expansion process.
- 46. If X is a state function and dX = $\delta q_{rev}/T$, where δq_{rev} stands for reversibly adsorbed heat, calculate ΔX for the isothermal expansion of one mole of an ideal gas from 2 to 1 atm at 298K. (A) (1/2)R ln(1/2),
 - (B) $R \ln(2)$, (C) 0, (D) $2R \ln(2)$, (E) none of the above.
- 47. Indicate the wrong statement for the properties of the second law of thermodynamics: (A) all reversible heat engines working in cycles between two temperatures, ΔT apart, must have the same efficiency,
 - (B) $dS \ge 0$ in an isolated system, (C) $(dA)_{T,V} \le 0$, (D) $(dG)_{T,P} \le 0$, (E) none of the above.
- 48. Indicate the wrong equation in the following: (A) $(\partial G/\partial P)_T=V$, (B) $(\partial G/\partial T)_P=(-S)$,
 - (C) $(\partial S/\partial \Gamma)_P = (-C_p/T)$, (D) $(\partial T/\partial P)_S = (\partial V/\partial S)_P$, (E) $(\partial V/\partial T)_P = (-(\partial S/\partial P)_T)$.
- 49. What would be the maximum heat output for a 1 kW heat pump working between the temperatures of 12 and 27°C? (A) 20 kW, (B) 1 kW, (C) 0.05 kW, (D) 15/27 kW, (E) 12/27 kW.
- 50. The gas equilibrium of 2SO₂+O₂=2SO₃ at 1000K has a total pressure of 2 atm. It is known that only SO₃ with a pressure of 1 atm exists initially. Please calculate the equilibrium constant at 1000K:
 - (A) 2, (B) 0.5, (C) 2.5, (D) 0.4, (E) 1 atm^{-1} .

物理冶金

- 51. In a small-angle tilt boundary whose angle of tilt is 0.1°, and the Burgers vector of dislocations is 0.33 nm, which of the following value is the spacing between dislocations in the boundary?
 - (A) 0.33 nm; (B) 0.66 nm; (C) 3.3 nm; (D) 6.6 nm; (E) 0.165 nm.
- 52. If a region with relatively higher atomic number than others, its image in SEM-BEI (backscattering electron image) will be: (A) brighter; (B) darker; (C) more sharp; (D) out of focus; (E) no different with other regions.
- 53. It is observed that dislocations are easily generated inside the material A, but difficult produced in the material B, which is true in the following statements:
 - (A) B is more ductile (large strain), because the material will be stronger if there is no dislocation;
 - (B) Grain size of A is smaller than that of B, because there are many subgrains (dislocation cells);
 - (C) A is more stronger than B, because there is the working hardening mechanism;
 - (D) Deformation in A is greater than B, because dislocation could slip;
 - (E) The dislocation has no effect on the elongation of material.
- 54. Which of the following phenomena is <u>the least</u> related to the interaction of a dislocation with solute atoms in a material? (A) Dislocation atmosphere; (B) Drag stress; (C) Strain aging; (D) Dynamic recovery; (E) Sharp yield point.
- 55. In the X-ray diffraction (XRD) experiment on two powder samples, one is nano-meter size and the other with mini-meter size, what would you find? (Every particle is considered as a crystal)
 - (A) No difference between the X-ray results of nano and mini-meter samples;
 - (B) Some peaks of nano-meter sample are disappeared;

科目 理工學力測驗一 科號 1101 共 10 頁第 7 頁

單選題,以2B鉛筆劃在答案卡上;答對一題得1分,答錯一題倒扣0.25分,未答不計分。

- (C) Some extra peaks of nano-meter sample are developed;
- (D) The intensity of each peak of nano-meter sample is increased;
- (E) The sharpness of each XRD peak of nano-meter sample is decreased.
- 56. Two-component system contains two phases in equilibrium condition, which of the following statements is wrong?
 - (A) T (temperature) keeps constant, the total content of alloy changes, the amount of each phase also changes;
 - (B) These two phases should have the identical partial-molal free energy;
 - (C) T keeps constant, the content of alloy changes, the equilibrium composition of each phase changes;
 - (D) For the same alloy, when the T changes, the equilibrium composition of each phase changes;
 - (E) The maximum number of equilibrium phases is 4 according to the phase rule.
- 57. Which one of the following five phenomena that could not strengthen the metal material?
 - (A) Working hardening; (B) Dislocation cross-slip; (C) Solid solution; (D) Grain refining;
 - (E) Precipitation of second phase particle.
- 58. Which one of the following five statements is wrong:
 - (A) Vacancy is a kind of defect, if there is no vacancy inside a crystal, the total energy will decrease;
 - (B) Vacancy will assist the inter-diffusion of atoms;
 - (C) The raising of temperature, the equilibrium density of vacancy increases;
 - (D) If the metal quenched from high temperature, it has excess number of vacancy;
 - (E) The existence of vacancies inside a crystal decreases the total energy of material.
- 59. Identify the dislocation, in terms of its Brugers vector, that can cross slip between (111) and (111) planes of

an f.c.c. crystal. (A) $1/3[1\bar{1}1]$; (B) $1/2[\bar{1}10]$; (C) [100]; (D) $1/6[\bar{1}\bar{1}0]$; (E) none of above.

- 60. The recrystallization rate of a cold-worked metal is **not** dependent to which of the following parameters?
 - (A) Purity of the metal; (B) Temperature of annealing; (C) Time of annealing;
 - (D) Amount of deformation; (E) The initial grain size before deformation.

近代物理

- 61. Let c be the light speed in vacuum. When c is expressed as a function of the electric permittivity εο and magnetic permeability μο, which of the following is correct
 - (A) $c = \varepsilon_o \mu_o$; (B) $c = (\varepsilon_o \mu_o)^{-1}$; (C) $c = \sqrt{\varepsilon_o \mu_o}$; (D) $c = 1/\sqrt{\varepsilon_o \mu_o}$; (E) $c = \varepsilon_o / \mu_o$.
- 62. Compton effect shows that (A) electron has wavelike property. (B) electron has particlelike property.
 - (C) light has wavelike property. (D) light has particlelike property.
 - (E) both electron and light have wavelike property.
- 63. Gravitational red shift indicates that (A) light has nonzero rest mass. (B) light has nonzero momentum.
 - (C) electron mass is a constant.
 - (D) wave length of a cosmic radiation becomes longer as the observer on earth views an outgoing radiation.
 - (E) the energy of a cosmic radiation is decreasing as the observer on earth views an outgoing radiation.

科目 理工學力測驗一 科號 1101 共 10 頁第 8 頁

單選題,以2B鉛筆劃在答案卡上;答對一題得1分,答錯一題倒扣0.25分,未答不計分。

- 64. A free electron has the wavelike property, its wavelength λ can be expressed in terms of its energy E as
 - (A) $\lambda = 1.24/E$ in unit of Å. (B) $\lambda = 1.24/E$ in unit of cm. (C) $\lambda = 1.24/E$ in unit of um.
 - (D) $\lambda = 1.24/E$ in unit of m. (E) none of above is right.
- 65. About the wavelike property of a free electron, which of the following statements is correct?
 - (A) It does not have the exact mass. (B) Its frequency is linearly proportional to its total energy.
 - (C) The absolute value of its wave amplitude is proportional to its energy.
 - (D) The square of its wave amplitude is proportional to its frequency.
 - (E) It emits light when it is confined in a box of fixed volume.
- 66. About the uncertainty principle, which of the following statements is correct?
 - (A) $\Delta p \cdot \Delta E \ge \hbar$ (B) $\Delta p \cdot \Delta t \le \hbar$ (C) $\Delta p \cdot \Delta x \le \hbar$ (D) $\Delta x \cdot \Delta E \ge \hbar$ (E) $\Delta p \cdot \Delta x \ge \hbar$
- 67. The atomic spectra
 - (A) confirm the atom model proposed by Rutherford.
 - (B) suggest that electrons in an atom do not have the same mass.
 - (C) show the energy quantization of electrons in an atom.
 - (D) can be explained by treating electrons in an atom as particles.
 - (E) are identical to all elements in the periodic table.
- 68. In the followings, which was not described in the Bohr's model of atom
 - (A) angular momentum. (B) the radius of electron orbit. (C) the electron spin.
 - (D) the energy level of electrons. (E) all mentioned were specified in the model.
- 69. To verify the quantization of electron energy in an atom, you can
 - (A) detect the intensity attenuation of an incident white light on the gas sample.
 - (B) detect the energy loss of an incident electron with constant energy.
 - (C) heat the gas sample and see the emission spectrum.
 - (D) do an x-ray diffraction.
 - (E) measure the specific heat of the gas sample.
- 70. In quantum mechanics, which of the following expressions concerns the energy conservation of a particle

(A)
$$\int_{-\infty}^{\infty} |\psi|^2 dV = 1.$$
 (B) $E = \hbar \omega$. (C) $\langle E \rangle = \frac{\int_{-\infty}^{\infty} E |\psi|^2 dV}{\int_{-\infty}^{\infty} |\psi|^2 dV}$. (D) $E = \hbar \omega + \frac{\hbar^2 k^2}{2m}$.

(E)
$$-\frac{\hbar^2}{2m}\frac{\partial^2 \psi}{\partial x^2} + V\psi = i\hbar \frac{\partial \psi}{\partial t}.$$

有機化學

- 71. While the carbonyl stretching frequency for simple aldehydes, ketones, and carboxylic acids is about 1710 cm⁻¹, the carbonyl stretching frequency for esters is about:
 - (A) 1700 cm⁻¹ (B) 1735 cm⁻¹ (C) 1800 cm⁻¹ (D) 1660 cm⁻¹ (E) none of the above.
- 72. What alkyllithium would react with acetic acid to form 2-butanone?
 - (A) methyllithium (B) vinyllithium (C) ethyllithium (D) propyllithium (E) none of the above.

科目 理工學力測驗一 科號 1101 共 10 頁第 9 頁

單選題,以2B鉛筆劃在答案卡上;答對一題得1分,答錯一題倒扣0.25分,未答不計分。

- 73. Which of the following amines can be resolved into enantiomers?
 - (A) trimethylamine (B) 3-pentanamine (C) 2-pentanamine (D) dimethylammonium chloride
 - (E) none of the above.
- 74. Which of the following is also known as a Schiff base?
 - (A) an imine (B) a cyanohydrin (C) a hydrate (D) sodium hydroxide (E) none of the above.
- 75. In electrophilic aromatic substitution reactions a chlorine substituent:
 - (A) is a deactivator and a m-director. (B) is a deactivator and an o,p-director. (C) is an activator and a m-director. (D) is an activator and an o,p-director. (E) none of the above.
- 76. Which of the following is not a fused-ring heterocycle?
 - (A) purine (B) pyrimidine (C) benzofuran (D) indole (E) none of the above.
- 77. Which of the following compounds is the most reactive dienophile in a Diels-Alder reaction with 1,3-butadiene? (A) CH₂=CHOCH₃ (B) CH₂=CHCHO (C) CH₃CH=CHCH₃ (D) (CH₃)₂C=CH₂ (E) none of the above.
- 78. To a solution of propyne in diethyl ether, one molar equivalent of CH₃Li was added and the resulting mixture was stirred for 0.5 hour. After this time, an excess of D₂O was added. Describe the major organic product(s) of this reaction.
 - (A) CH₃CCD and CH₄ (B) CH₃CCCH₃ (C) CD₃CCCD₃ (D) CH₃CCCD₃ (E) none of the above.
- 79. When trans-3-hexene is treated with MCPBA, the major organic product is:
 - (A) a meso epoxide (B) a 1:1 mixture of enantiomeric epoxides (C) a meso diol
 - (D) a 1:1 mixture of enantiomeric diols (E) none of the above.
- 80. When (R)-2-butanol is treated with TsCl in pyridine, the product formed is:
 - (A) an achial compound. (B) a mixture of diastereomers. (C) a racemic mixture.
 - (D) a single enantiomer. (E) none of the above.

工程力學

Member ABC is supported by a pin and bracket at B and by an inextensible cord attached at A and C and passing over a frictionless pulley at D as shown in figure

- 81. the tension force in cable is
 - (A) 250 N (B) 275 N (C) 300 N
 - (D) 325 N (E) 350 N
- 82. the horizontal reaction at B is
 - (A) 250 N (B) 275 N (C) 300 N
 - (D) 325 N (E) 350 N
- 83. the vertical reaction at B is
 - (A) 200 N (B) 225 N (C) 250 N
 - (D) 275 N (E) 300 N

科目___理工學力測驗--- 科號___1101___共___10___頁第___10___頁

單選題,以2B鉛筆劃在答案卡上;答對一題得1分,答錯一題倒扣0.25分,未答不計分。

For the beam and loading shown in figure

- 84. the vertical reaction at A is
 - (A) 5 kN (B) 5.25 kN (C) 5.5 kN
 - (D) 5.75 kN (E) 6 kN
- 85, the reaction moment at A is
 - (A) 21.6 kN-m (B) 22.4 kN-m (C) 23.2 kN-m
 - (D) 24 kN-m (E) 24.8 kN-m

For the truss and loading shown in the figure

- 86. the zero force members in the truss are
 - (A) 4 (B) 5 (C) 6 (D) 7 (E) 8
- 87. the force in member BD is
 - (A) 24 kN (B) 26 kN (C) 28 kN
 - (D) 30 kN (E) 32 kN
- 88. the reaction at roller G is
 - (A) 40 kN
 - (B) 44 kN
- (C) 48 kN

- (D) 52 kN
 - (E) 56 kN

- A 24-ft-long steel tube with modulus of elasticity $E = 29 (10^3)$ ksi having the outer radius and inner radius of 3 in and 2 in, respectively. The tube is to be used as a pin-ended column. (89-90)
- 89. What is the maximum allowable axial load the column can support so that it does not buckle?
 - (A) ~ 176 kip, (B) ~ 163 kip, (C) ~ 125 kip, (D) ~ 133 kip, (E) ~ 203 kip
- 90. The force created an average compressive stress at the maximum alloable axial load in the column is
 - (A) \sim 11.20 ksi, (B) \sim 10.40 ksi, (C) \sim 7.98 ksi, (D) \sim 8.46 ksi, (E) \sim 12.95 ksi