1. Find the particular solution corresponding to the initial conditions,

$$x^2y^2 - 2y = 0$$
; $y(1) = 2$, $y'(1) = y''(1) = 0$

(10%)

2. Obtain the general solution by the method of elimination,

$$x' = \sin t - y$$

$$x' = -9x + 4$$

Solve for x (t), on $0 \le t < \infty$ 3.

$$x''''-x=\delta(t-1)$$
, $x(0)=x'(0)=x''(0)=x'''(0)=0$

(10%)

Determine the rank, nullity, number of linearly independent rows, and number of linearly independent columns for the given matrix.

(10%)

Evaluate the inverse matrix

$$\sin\theta = 0 \cos\theta$$

6. (10 points)

Compute the eigenvalues of the matrix

$$\begin{bmatrix} 2 & 1 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}.$$

7. (10 points)

u is a scalor field and ∇^2 is the Laplacian operator.

Evaluate $\nabla^2 u$ for

$$u(x,y)=(x)(e^y).$$

8. (10 points)

The curve C is defined parametrically by

$$x(\tau) = \cos(\tau), \quad y(\tau) = \sin(\tau), \quad \text{with} \quad 0 \le \tau \le \pi/2;$$

i.e., counterclockwise along the circle $x^2+y^2=1$ from (0,1) to (1,0). Evaluate the line integral

$$\int_C \left(3x^2 + 3y^2\right) ds.$$

八十九學年度、林州代學工並可定所(本) 系(所) 多) 組頭士班研究生招生考試
工程數學 科號(2) 400 共 3 頁第 3 頁 *請在試卷【答案卷】內作答

• (10 points)

C is the counterclockwise circle |z| = 5, which is a closed curve. Evaluate the complex integral

$$\oint_C \frac{e^z}{z-3} dz$$

10.(10 points)

Compute the Fourier series of the below periodic function f(x), where f(x) is given over one period as follows

$$f(x) = x$$
 for $-\pi < x \le \pi$.