1. Prove that, for a gas obeying the van der Waals equation

$$\left(P + \frac{a}{V_m^2}\right)(V_m - b) = RT, \qquad \left(\frac{\partial U}{\partial V_m}\right)_T = \frac{a}{V_m^2}$$

Where u is the internal energy. (10%)

2. Suppose that a large molecule, such as a protein, contains n sites to which a molecule A (a ligand) can become attached. Assume that the sites are equivalent and independent, so that the reactions M + A ≥ MA, MA+A ≥ MA₂, etc., all have the same equilibrium constant K. Show that the average number of occupied sites per molecule is

$$\overline{\nu} = \frac{nK[A]}{1 + K_s[A]}$$

(10%)

- 3. The mole fraction of a nonvolatile solute dissolved in water is 0.010. If the vapor pressure of pure water at 293 K is 2.339 kPa and that of the solution is 2.269 kPa, calculate the activity and activity coefficient of water (10%)
- 4. In the system A-B a line of three-phase equilibrium occurs at 900 K as determined by thermal analysis. A second three-phase equilibrium occurs at 500 K. Only one halt is observed for any one cooling curve. The compound AB₂ is known and melts at 600 K. If A melts at 1200 K and B at 700 K, sketch the simplest phase diagram consistent with the given data. Label each region.(10%)
- 5. The molar conductivity at 18 °C of a 0, 0100 M aqueous solution of ammonia is 9.6Ω⁻¹cm²mol⁻¹. For NH₄Cl, ∧₀=129.8Ω⁻¹ cm²mol⁻¹ and the molar ionic conductivities of OH and Cl are 174 and 65.6Ω⁻¹cm²mol⁻¹, respectively. Calculate ∧₀ for NH₃ and the degree of ionization in 0.01 M solution.(10%)

國 立 清 華 大 學 命 題 紙

八十七學年度**は外界学工程研究所(**療案(所) <u>シ</u> 組碩士班研究生入學考試 物理化學(I) 科號 2001 共 2 買第 2 頁 1讀在試卷【答案卷】內作答

 a. Calculate the standard emf E⁰ for the reaction fumarate ² + lactate -> succinate² + pyruvate

on the basis of the following information:

fumarate ²⁻ + 2H⁺ +2e⁻→succinate²⁻
pyruvate + 2H⁻ +2e⁻→lactate⁻

$$E^0 = 0.031V'$$

 $E^0 = -0.185V$

The E^{0} values relate to ph7. The temperature coefficient $\partial E^{0}/\partial T$ for this cell

b. Calculate ΔG° , ΔH° , and ΔS° at 25.0 °C.

(20%)

7. Derive the following relationship for the half-life $t_{1/2}$ of a reaction of order n, with all reactants having an initial concentration a_0 :

$$t_{1/2} = \frac{2^{n-1} - 1}{ka_0^{n-1}(n-1)}$$

(10%)

8. A reaction A + 2B = 2Y + 2Z occurs according to the mechanism

$$A = \frac{k_1}{k_{-1}} 2X$$

(very rapid equilibrium)

$$X + B \xrightarrow{k_2} Y + Z$$

(slow)

Obtain an expression for the rate of formation of the product Y. (10%)

- 9. How many lattice points belong to a unit cell of
 - a. a face-centered lattice;
 - b. a body-centered lattice?

Please sketch and calculate.

(10%)