

The van der Wall equation of state correct the ideal gas law PV=RT (for 1 mole of gas) for real gas.

- (a) What is the van der Wall equation of state?
- (b) What approximations do we make for the ideal gas model?
- (c) How do your equation in (a) correct the approximations in (b)?
- (d) The van der Wall equation of state can be expanded with the virial coefficients of state;

$$P = \frac{RT}{V} \left(1 + \frac{B}{V} + \frac{C}{V^2} + \frac{D}{V^3} + \cdots \right)$$

Derive B and C.

2. 5%

The entropy is the basic term of statistical mechanics.

- (a) What is the Boltzmann definition of entropy in terms of probability? Define each term clearly.
- (b) What does the entropy change when one mole of gas with volume V freely expand to 2V?

3. 20%

The partition function is the prime tool in statistical mechanics.

- (a) How do you define a partition function?
- (b) What is the total partition function of one mole of a diatomic molecule in terms of partition functions of translation, internal motion, electronic states and nuclear states.
- (c) Use the particle in a box model to derive the translational partition function.

八十六學年度材料代表エ祖研究所(』系(所)<u>2) 多</u>組碩士班研究生入學考試 220/ 科目<u>物理化学(I)</u>科號 230/ 共<u>3</u> 頁第<u>2</u>頁 *調在試養【答案卷】內作答

- (d) If the electronic ground state is a triplet state, what is the electronic partition function?
- (e) What is the vibrational partition function if the vibrational frequency is v for this diatomic molecule?
- 4. How does the partition function of the preceding problem affect the heat capacity of an ideal diatomic gas? (5%)
- Consider the heat capacity of solids. (5%)
 - (a) What is the law of Dulong and Petit? What is its restriction?
 - (b) How does Einstein's theory correct to release the restriction in (a)?
 - (c) How does Debye's theory further correct Einstein's theory?
- 6. Use the steady-state approximation to solve [A] (t), [B](t) and the differential rate equation of reaction in terms of A_0 and B_0

$$A+B \xrightarrow{k_1} AB \xrightarrow{k_2} C+A$$

given the initial concentration of A and B to be A_0 and B_0 , respectively, and [A] is in excess. (10%)

- Estimate the order of magnitude for the collision frequency (per second) of a N₂ molecule at 300 K under 1 atm of pressure. (5%)
- When the potential of intermolecular interaction is best described to be \$\frac{1}{R^6}\$, whereas R denotes the intermolecular distance. What kind of force is used to describe this interaction? (Write down the name of the force) (4%).
 Which following set of molecules below the interparticle interaction is best described to be \$\preceq \frac{1}{R^6}\$ (a) He He (b) Cs⁺ Cl⁻ (c) Na⁺-Cl (d) HF-

H₂O. (3%)

國 立 清 華 大 學 命 題 紙

八十六學年度計析作學工學研究所(章系(所)<u>乙乡</u>組頭士班研究生入學考試 科目<u>物理化學(I)科號 301 共 3 頁第 3 頁 4讀在試卷【答案等】內作答</u>

- 9. The reaction $H_2(g) + Br_2(g) \rightarrow 2HBr(g)$ can be activated by UV light. One assumes that the photon intensity measured before the reaction cell is I_0 and after the cell is I and the absorption follows Beer-Lambert law. After several experimental measurements, we determine the differential rate equation for this reaction to be $\frac{d[HBr]}{dt} = \frac{a(H_2)[Br_2](I_0-I)}{[Br_2] + b[HBr]}, \text{ in which } a$ and b are the rate coefficiencies. Derive a mechanism to elaborate these results. (12%)
- Label each of the following statements as either true or false. If a statement is true only under special circumstances, label it as false. (6%)
 - (a) The mean molecular kinetic energy of a gas is independent of the molecular mass.
 - (b) The order of a reaction with respect to a substance is not necessarily equal to the stoichiometric coefficient of that substance in the reaction equation.
 - (c) First-order processes occur only in chemical processes.
- 11. For a simple two-body collision, the potential energy of interaction of particles is V(r), and the initial relative kinetic energy is E_0 . If the impact parameter for the collision is b, calculate the distance of closest approach of these two particles. (10%)