八十四學年度^{材料化學工製研定外},所*的*組碩士班研究生入學考試 科圖 物理化學(II) 科號 / 40² 共 5 頁第 / 頁 *請在試卷【答案卷】內作答

- 1. (10%) Assume that there is one conduction electron per atom in a gold crystal, and the energy levels available to the electrons are those of a cubic box.
- (a) Show that the number of electrons per unit volume in an energy range from E to E + dE is given by the density of states function;

$$N(E)dE = \frac{\pi}{2} \left(\frac{8m}{h^2} \right)^{-3/2} E^{-1/2} dE \ (m = 0.9109 \times 10^{-30} \text{kg of ets})$$

(b) Hence, prove the maximum level (Fermi level) occupied by the electrons at 0 K is

$$E_{\rm F} = (\frac{3L}{8\pi V})^{2/3} \frac{h^2}{2m}$$

where L/V is the number of electrons per unit volume occupying energy levels from E = 0 $\,$ to $\,$ E = $E_{\rm F}$

(c) Gold is face centered cubic with 4 atoms per unit cell and unit length $a_0=0.408$ nm. Calculate the Fermi level of gold (in J or in eV as unit).

- 2. (10%) Suppose that an electron moving in one dimension with a kinetic energy of 9.5 eV meets a barrier of height 10 eV and width 1.0 nm,
- (a) Estimate the probability that the electron will tunnel through the barrier. (The penetration probability

$$P = 16 \varepsilon (1 - \varepsilon) e^{-2/\sqrt{D}}$$
 where $\varepsilon = \frac{E}{V}$, $D = \left[\frac{\hbar^2}{2m(V - E)}\right]^{1/2}$

國立清華大學命題紙

八十四學年度<u>社外科学エ祖研究所</u>所<u>利益順士班研究生入學考試</u> 科目 物理化学(II) 科號 (402 共 5 真第2 頁 *請在試券【答案券】內作答

e's charge = 1.602×10^{-19} C, $\exp(-7.24) = 7.17 \times 10^{-4}$)

(b) This situation is similar to that of an electron tunneling through a thin nonconducting layer at an intermetablic contact. Describe the basic principle of the scanning tunneling microscope (STM).

3. (5%) A simple harmonic oscillator with mass m has a restoring force equal to -kx. Write the Mamiltonian for this system.

- 4. (10%)
- (a) The two-particle rigid totator undergoes rotation about its center of mass. Write the Hamiltonian for this system using spherical coordinate.
- (b) The eigenvalues for the rigid rotator are

$$\mathbb{E}_{J} = \frac{J(J+1)\hbar^2}{2J}$$

where the moment of inertia is given by $I = \mu r^2$. What is the degeneracy of each level?

(c) Prepare a plot of the energy levels expressed in unit of $\hbar^2/2I$.

八十四學年度 *** | 140 | 14

5.(5%) Identify which of the following functions are eigenfunctions of the operator $\frac{d}{dx}$: (a) e^{ikx} , (b) $\cos kx$, (c) K, (d) kx, (e) e^{ikx} . Give the corresponding eigenvalue where is appropriate.

- (10%) Explain as simple as possible.
- (a) angular momentum
- (b) Wien's displacement law of blackbody radiation
- (c) quantum
- (d) two examples for wave and particle proporties for a matter
- (e) The uncertainty principle
- (f) Born interpretation for the wavefunction
- (g) $\mathbb{E}_n = \frac{n^2 h^2}{8ma^2}$ for a particle in one-dimension box, why is $n \neq 0$?
- (h) zero-point energy
- (i) spin j
- (j) degeneracy

八十四學年度<u>材料升學工程研究所("新</u>知碩士班研究生入學考試物理化學(II) 科母 料號 / 402 共 5 英第 4 頁 #讀在試卷【答案卷】內作答

7. (10%) Netal N has an fcc structure with a $_0$ = 0.4220 nm. It's oxide, MO, crystalizes with NaCl structure and a_0 = 0.5016 nm. Calculate the nearest N-N distances in MO and M at 25°C. Comment on the calculated results.

8. (16%) Use band theory to classify solids according to electronic properties into insulator, metal, intrinsic semiconductor, and impurity semiconductor.

9. The reaction $2A0 \div 0_2 \rightarrow 2A0_2$ is tentatively assigned as

$$A0 + A0 \rightarrow A_2O_2$$
 k_1 (1)
 $A_2O_2 \rightarrow 2AO$ k_2 (2)
 $A_2O_2 \div O_2 \rightarrow 2AO_2$ k_3 (3)

(a) (5%) Obtain the rate law

$$\frac{d[AO_2]}{dt} = \frac{2k_1k_2[AO]^2[O_2]}{k_2 + k_2[O_2]}$$

by applying the steady state approximation to $\left[A_2O_2\right]$

國 立 清 華 大 學 命 題 紙

八十四學年度 **科+李五紅研究所 《万 》 組碩士班研究生入學考試 科目 物理化學(II) 科號 1402 共 5 頁第 5 頁 *請在試卷【答案卷】內作签

(b) (9%) Suppose a very small fraction of A_2O_2 formed in (1) goes to form products in (3), while most of the A_2O_2 reverts to AO in (2). Given the activation energies are E_1 = 90 kJ, E_2 = 190 kJ, and E_3 = 70 kJ, calculate the overall activation energy.

10. (10%) Briefly describe the operating principle of Lager. Use CO_2 laser as an example.