共 [第] 第

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

一、多選題 (每題5分,共40分,每題單一選項答錯倒扣1分)

Symbols and constants for 一及二

P: pressure; V: volume; T: temperature; U: internal energy; H: enthalpy; S: entropy: G: Gibbs energy; q: heat; w: work; C: heat capacity; μ : chemical potential; k: rate constant; \overline{X} : molar property X (example \overline{S} : molar entropy)

Gas constant $R=8.314 \text{ J K}^{-1}\text{mol}^{-1}=8.314\times10^{-2} \text{ L bar K}^{-1}\text{mol}^{-1}=8.206\times10^{-2} \text{ L atm K}^{-1}\text{mol}^{-1}$

- 1. Which of the following statements is/are true?
- (A) For every process in an isolated system, $\Delta T=0$.
- (B) For every process in an isolated system, $\Delta U=0$.
- (C) For every process in an isolated system, $\Delta S=0$.
- (D) $dU=C_V dT$ is always valid even when V is not constant.
- (E) It is possible for the entropy of a closed system to decrease substantially in an irreversible process.
- 2. Which of the following statements conform(s) with the second law of thermodynamics?
- (A) $dS > \frac{dq}{rev} / T$
- (B) $dS = \frac{dq_{rev}}{T}$
- (C) $dS \ge \frac{dq}{T}$
- (D) $dS \le dq / T$
- $(E) \oint \frac{dq}{T} \le 0$
- 3. Consider the reversible melting (fusion) of a pure solid X at the normal melting temperature, which of the following is/are true?
- (A) $\Delta S_X=0$
- (B) $\Delta S_X > 0$
- (C) $\Delta S_{\text{total}}=0$
- (D) $\Delta S_{\text{total}} > 0$
- (E) $\Delta S_{\text{surrounding}} < 0$

台灣聯合大學系統105學年度碩士班招生考試試題

類組: 化學類 科目: 物理化學(1004)

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 4. Consider a chemical reaction A+B=C+D that is at equilibrium at the extent of reaction ξ =0.2 at P=1 bar and T=298.15 K, which of the following is/are correct?
- (A) the standard reaction Gibbs energy $\Delta_r G^{\circ}=0$.
- (B) the change of standard Gibbs energy from $\xi=0$ to $\xi=0.2$ is zero, i.e., $\Delta G^{\circ}(\xi=0.2)=0$.

(C)
$$\left(\frac{\partial G}{\partial \xi}\right)_{T,P,\xi=0.2} = 0$$

(D)
$$\left(\frac{\partial G}{\partial \xi}\right)_{T,P,\xi=0.4} > 0$$

- (E) If $\Delta_r G^{\circ} > 0$, no products (C and D) can be produced.
- 5. Consider the mixing of one mole of an ideal gas A and one mole of another ideal gas B, which of the following is/are true?

(A)
$$\Delta H_{\text{mix}}=0$$

(B)
$$\Delta S_{\text{mix}} = -2R \ln 2$$

(C)
$$\Delta S_{\text{mix}} = 2R \ln 2$$

(D)
$$\Delta G_{\text{mix}} = -2RT \ln 2$$

(E)
$$\Delta G_{\text{mix}} = 2RT \ln 2$$

6. Which of the following is/are true for a closed one-component system of a <u>real</u> gas?

(A)
$$dG = -SdT + VdP$$

(B)
$$\left(\frac{\partial U}{\partial V}\right)_T = 0$$

(C)
$$\left(\frac{\partial H}{\partial P}\right)_T \neq 0$$

(D)
$$\overline{C}_P - \overline{C}_V = R$$

(E)
$$dH = C_P dT$$

7. A real gas can be approximately described by an equation of state, $P(\overline{V}-b)=RT$, where \overline{V} is the molar volume and b is a constant. Which of the following is/are true?

$$(A) \left(\frac{\partial \overline{S}}{\partial P}\right)_{T} = -\frac{R}{\overline{V} - b}$$

(B)
$$\left(\frac{\partial S}{\partial V}\right)_T = \frac{R}{\overline{V} - b}$$

(C)
$$\left(\frac{\partial U}{\partial V}\right)_T = \frac{RT}{\overline{V} - b}$$

(D)
$$\left(\frac{\partial U}{\partial V}\right)_T = 0$$

(E)
$$\left(\frac{\partial \overline{H}}{\partial P}\right)_T = b$$

台灣聯合大學系統105學年度碩士班招生考試試題

類組:化學類 科目:物理化學(1004)

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

8. Consider a parallel reaction mechanism

$$\begin{array}{c} A & \xrightarrow{k_1} & B \\ A & \xrightarrow{k_2} & C \end{array}$$

Given the initial conditions $[A]_0 \neq 0$ and $[B]_0 = [C]_0 = 0$, which of the following is/are correct?

(A)
$$[A]_{t} = [A]_{0}e^{-k_{1}t}$$

(B)
$$[A]_{t} = [A]_{0} e^{-(k_{1}+k_{2})t}$$

(C) [B]_t =
$$\frac{k_1}{k_1 + k_2}$$
 [A]₀(1- $e^{-k_1 t}$)

(D) [B]_t =
$$\frac{k_1}{k_1 + k_2}$$
 [A]₀(1 - $e^{-(k_1 + k_2)t}$)

(E)
$$\frac{[B]_t}{[C]_t} = \frac{k_2}{k_1}$$

二、單選題 (每題2分,共10分)

- 9. Which of the following statements is true?
- (A) For a two-component system, the maximum number of phases that can coexist is three.
- (B) For a one-component system, the most stable phase at a given T and P is the phase with the lowest molar Gibbs energy.
- (C) For a simple one-component system, the maximum number of phases that can coexist is three, and the coexisting three phases must be one gas phase, one liquid phase, and one solid phase.
- (D) Three independent intensive variables are required to fully specify the intensive state of a simple three-component system.
- (E) When a binary liquid mixture boils at the azeotrope composition, the partial vapor pressures of the two liquids are the same.

共 算 第 4 頁

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

10. The gas-phase decomposition of ozone, $2O_3 \rightarrow 3O_2$, is believed to proceed through the mechanism

$$O_3 \xrightarrow{\frac{k_I}{k_{.I}}} O_2 + O$$

$$O + O_3 - \frac{k_2}{2O_2}$$

Which of the following is/are correct on the basis of the steady-state approximation?

(A)
$$-\frac{d[O_3]}{dt} = \frac{2k_1k_2[O_3]}{k_{-1}[O_2]}$$

(B)
$$-\frac{d[O_3]}{dt} = \frac{2k_1k_2[O_3]^2}{k_1k_{-1}[O_2] + k_2k_{-1}[O_3]}$$

(C)
$$-\frac{d[O_3]}{dt} = \frac{2k_1k_2[O_3]^2}{k_{-1}[O_2] + k_2[O_3]}$$

(D)
$$-\frac{d[O_3]}{dt} = \frac{2k_1k_2[O_3]^2}{k_1k_{-1}[O_2] + k_2k_{-1}[O_3]}$$

(E)
$$-\frac{d[O_3]}{dt} = \frac{2k_1k_2[O_3]^2}{k_{-1}[O_2]}$$

11. Which of the following figures displays possible dependences of the chemical potential (μ) on temperature, i.e., $\mu(T)$, of the liquid (l) and gas (g) phases of a pure substance at a constant pressure?

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

12. Which of the following figures displays a possible dependence of the chemical potential (μ) on pressure, i.e., $\mu(P)$, of a <u>pure gas</u>?

13.A system of n mole of an ideal gas undergoes an irreversible adiabatic expansion from state $\mathbf{1}(P_1, V_1, T_1)$ to state $\mathbf{2}(P_2, V_2, T_2)$ against a constant external pressure $P_{\text{ex}} = P_2 < P_1$. Which of the following is correct?

(A)
$$\Delta S = -\frac{P_2(V_2 - V_1)}{T_2 - T_1}$$

(B)
$$\Delta S = C_V \ln \frac{T_2}{T_1}$$

(C)
$$\Delta S = nR \ln \frac{V_2}{V_1}$$

(D)
$$\Delta S = C_V \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1}$$

(E) Because the path is not specified, the entropy change (ΔS) can not be calculated.

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

三、問答題(共 50 分)

1. For a quantum system, a particle of mass m is confined to a one-dimensional region $0 \le x \le \ell$ with the potential energy

$$V(x) = \begin{cases} 0 & \text{if } 0 \le x \le \ell \\ \infty & \text{otherwise} \end{cases}$$

- (a) (4分) Write down the energies and normalized wave functions for the stationary state in terms of m, ℓ , and the Planck constant h. What are the allowed values for the quantum number? (You do not need to solve any equation.)
- (b) (4分) Calculate the wavelength of a photon corresponding to a transition between the two lowest energy levels.
- 2. A particle of mass m moves in one dimension under the influence of a potential energy V(x). Suppose the particle is in an energy eigenstate

$$\psi(x) = \left(\frac{\alpha^2}{\pi}\right)^{1/4} \exp\left(-\frac{\alpha^2}{2}x^2\right)$$

with energy $E = \frac{\hbar^2 \alpha^2}{2m}$.

- (a) (3分) Find the mean position of the particle.
- (b) (3分) Find the mean momentum of the particle.
- (c) (6分) What is the potential energy V(x) for the system?
- 3. A helium atom with mass M moving on the surface of a buckyball can be modeled as a free particle on the surface of a sphere with radius R. Suppose that the state of the atom is described by the normalized wave function

$$\psi(\theta,\phi) = \frac{1}{\sqrt{2}} Y_{1,-1}(\theta,\phi) + \frac{1}{\sqrt{3}} Y_{10}(\theta,\phi) + \frac{i}{\sqrt{6}} Y_{00}(\theta,\phi)$$

where $Y_{\ell m}(\theta, \phi)$ are the spherical harmonics.

- (a) (3分) What is the expectation value of L_z in this state?
- (b) (3分) What is the expectation value of the energy in this state?
- 4. (a) (4分) Write down the ground-state term symbol for the following atom or ion: (i) H; (ii) F⁻.
 - (b) (4分) What are the possible values of J for a 2D term? How many states are associated with this term?

共一頁第一頁

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 5. Consider an N particle system where at each (distinguishable) site on a lattice there is a spin which may point up (high energy) or down (low energy). The energies in the two cases are $E=\Delta>0$ for spin up and E=0 for spin down. We assume that there are the only two quantum states for the spin at each of the N sites.
 - (a) (4分) What is the molecular partition function? What is the canonical partition function for the system? Express these functions in terms of N, Δ , and $\beta (=1/k_BT)$.
 - (b) (4分) What is the numerical value of the molecular partition function as $T \to 0$, and as $T \to \infty$?
 - (c) (5分) Derive an expression for the average thermal energy $\langle E \rangle$. Evaluate the average thermal energy in the low and high temperature limits $(T \to 0 \text{ and } T \to \infty)$.
 - (d) (3分) Suppose that an experimentalist finds that the population ratio of the system is given by $\frac{n(\text{spin up})}{n(\text{spin down})} = 2$. Use the Boltzmann factor for such population ratio to derive an expression for the effective temperature T which describes this system. Also, what is the sign of this temperature?

