台灣聯合大學系統 105 學年度碩士班招生考試試題

類組:化學類 科目:綜合化學(1001)

頁 第 頁

※請在答案卡內作答

1																	18
1A	1 _																_8A
H	$\begin{bmatrix} 2 \\ 2 \\ A \end{bmatrix}$											13	14	15	16	17	He He
1.008	2A)										3A	4A	5A	6A	7A	4.003
Li	Be											$\stackrel{5}{\mathrm{B}}$	Ĉ	7 N	8 0	9 F	Ne Ne
6.941	9.012											10.81	12.01	14.01	16.00	19.00	20.18
Na Na	Mg	3	4	5	6	7	8	9	10	11	12	13 Δ1	14 Si	15 D	16	17 C1	18
22.99	24.31	3B	4B	5B	6B	7B	8B	8B	8B	1B	2B	A1 26.98	28.09	30.97	32.07	35.45	Ar 39.95
19 K	20 Ca	Sc 21	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Go	32 G-2	33	34	35 Br	36 Kr
39.10	40.08	44.96	47.88	50.94	52.00	54.94	55.85	58.93	58.69	63.55	65.39	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	79.90	83.80
37 Rb	38 Sr	39 V	40 Zr	41 Nb	42 Mo	43 Tc	44 D.:	45 D1	46	47	48	49	50	51	52	53	54 Xe
85.47	87.62	88.91	91.22	92.91	95.94	(98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	1 126.9	Xe 131.3
55 Cs	56 Ba	57 *La	72 Hf	73 Ta	74 W	75 Do	76	77	78	79	80	81 Tl	82	83 Bi	84	85	86
132.9	137.3	138.9	178.5	180.9	183.8	Re 186.2	Os 190.2	192.2	Pt 195.1	Au 197.0	Hg 200.6	11 204.4	Pb 207.2	B ₁ 209.0	Po (209)	At (210)	Rn (222)
87 Fr	88 Ra	89	104 D.C	105	106	107	108	109	110	111	112		114		116	(2.0)	118
(223)	(226)	†Ac (227)	Rf (261)	Db (262)	Sg (263)	Bh (262)	Hs (265)	Mt (268)	Ds (271)	Rg (280)	Uub		Uuq		Uuh		Uuo
							<u> </u>	/					<u></u>				

*Lanthanide series	58	59	60	61	62	63	64	65	66	67	68	69	70	71
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
	140.1	140.9	144.2	(147)	150.4	152.0	157.3	158,9	162.5	164.9	167.3	168.9	173.0	175.0
†Actinide series	90	91	92	93	94	95	96	97	98	99	100	101	102	103
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.0	231.0	238.0	237.0	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

單選題(共40題,每題2.5分,滿分為100分)

	1. In the ground state of a cobalt atom there are	unpaired electrons and the atom is
--	---	------------------------------------

- (A) 3, paramagnetic (B) 5, paramagnetic (C) 2, diamagnetic

- (D) 0, diamagnetic (E) 2, paramagnetic
- 2. Which one of the following is an amphoteric metal hydroxide?
 - (A) KOH
- (B) $Ba(OH)_2$ (C) $Pb(OH)_2$ (D) LiOH (E) $Mg(OH)_2$

3. Assuming the K_{sp} for Mg(OH)₂ is 1.8 x 10⁻¹¹, what is the pH of a saturated solution of Mg(OH)₂?

- (A) 3.5 (B) 10.1 (C) 10.9 (D) 10.5 (E) 9.2

4. Assuming the K_{sp} for Ag₃PO₄ is 1.8 x 10⁻¹⁸, Ag₃PO₄ would be <u>least soluble</u> at 25°C in which of the followings?

- (A) 0.1 M AgNO₃ (B) 0.1 M HNO₃ (C) pure water (D) 0.1 M Na₃PO₄
- (E) solubility in (A), (B), (C), or (D) is not different

5. The perchloric acid molecule contains:

- (A) 13 lone pairs, 1 π bond, and 4 σ bonds.
- (B) 9 lone pairs, no π bonds, and 6 σ bonds.
- (C) 8 lone pairs, 2π bonds, and 7σ bonds.
- (D) 2 lone pairs, 3 π bonds, and 4 σ bonds.
- (E) 11 lone pairs, no π bonds, and 5 σ bonds.

6. What hybridization is predicted for sulfur in the HSO₃ ion?

- (A) sp
- (B) sp^2 (C) sp^3 (D) sp^3d

類組: 化學類 科目: 綜合化學(1001)

※請在答案卡內作答

- 7. Both ZnS and CaF₂ have a face-centered cubic unit cell where the S²- and Ca²⁺ ions are closest packed in each structure. Which of the following is true?
 - (A) There are 4 tetrahedral holes empty in each structure.
 - (B) In both compounds, one-half of the tetrahedral holes are filled.
 - (C) In both compounds, all the tetrahedral holes are filled.
 - (D) In ZnS, one-half of the tetrahedral holes are filled by Zn²⁺ ions, whereas in CaF₂ all the tetrahedral holes are filled with F ions.
 - (E) There are 8 Zn²⁺ ions and 4 F⁻ ions in the unit cell.
- 8. Na₂S crystallizes with an antifluorite structure. Which statement is true about this structure?
 - (A) The coordination number of each S^{2-} center is 8.
 - (B) Each Na⁺ ion is within a cubic arrangement of S²⁻ ions.
 - (C) The structure is based on a CaF₂ structure, with Na⁺ ions in Na₂S occupying the same sites as Ca^{2+} ions in CaF_2 .
 - (D) The S^{2-} ion is tetrahedrally coordinated.
 - (E) None is correct.
- 9. A possible mechanism for the reaction, $2A + B \rightarrow C + D$, is:

fast, equilibrium

$$(2) A_2 + A \rightarrow A_3$$

slow

(3)
$$A_3 + B \rightarrow A + C + D$$
 fast

According to the mechanism, the rate law will be:

- (A) Rate = $k[A]^2$ (B) Rate = k[A][B] (C) Rate = $k[A]^2[B]$ (D) Rate = k[A]

- (E) Rate = $k[A]^3$
- 10. Suppose the activation energy of a certain reaction is 250 kJ/mol. If the rate constant at $T_1 = 300 \text{ K}$ is k_1 and the rate constant at $T_2 = 320$ K is k_2 , then the reaction is ___ times faster at 320 K than at 300 K. (Hint: Solve for k_2/k_1 and Euler's number e approximately equal to 2.718)
 - (A) 3×10^{-29} (B) 0.067 (C) 15.0 (D) 525 (E) 3×10^{-28}

- 11. The half-reaction that occurs at the anode during the electrolysis of molten sodium bromide is:
 - (A) $2 Br^{2} \rightarrow Br_{2} + 2 e^{2}$ (B) $Br_{2} + 2 e^{2} \rightarrow 2 Br^{2}$ (C) $Na^{+} + e^{2} \rightarrow Na$

- (D) Na \rightarrow Na⁺ + e⁻ (E) 2 H₂O + 2 e⁻ \rightarrow 2 OH⁻ + H₂
- 12. Which one of the following substances can be melted without breaking chemical bonds?
 - (A) sodium sulfate
- (B) zinc chloride
- (C) sulfur dioxide
- (D) silicon dioxide

(E) diamond

台灣聯合大學系統 105 學年度碩士班招生考試試題

類組: 化學類 科目: 綜合化學(1001)

※請在答案卡內作答

13. At 445°C, K_c for the following reaction is 0.020.

$$2HI(g) \implies H_2(g) + I_2(g)$$

A mixture of H₂, I₂, and HI in a vessel at 445°C has the following concentrations:

[HI] = 2.0 M, $[H_2] = 0.50 \text{ M}$ and $[I_2] = 0.10 \text{ M}$. Which one of the following statements concerning the reaction quotient, Q_c , is **TRUE** for the above system?

- (A) $Q_c = K_c$; the system is at equilibrium.
- (B) Qc is less than Kc; more H2 and I2 will be produced.
- (C) Q_c is less than K_c; more HI will be produced.
- (D) Qc is greater than Kc; more H2 and I2 will be produced.
- (E) Q_c is greater than K_c; more HI will be produced.
- 14. Consider the complex ion $[Mn(OH_2)_6]^{2+}$ with 5 unpaired electrons. Which response includes all the following statements that are **true**, and no false statements?

I. It is diamagnetic. II. It is a low spin complex. III. The metal ion is a d⁵ ion.

IV. The ligands are weak field ligands. V. It is octahedral.

- (A) I, II (B) III, IV, V (C) I, IV (D) II, V (E) III, IV
- 15. Which of the following complexes do you expect to be brightly colored?
 - (A) Cs₂[TiCl₆] (B) [Zn(pic)Cl₂] (pic: picolinic acid) (C) [Mn(H₂O)₆]SO₄
 - (D) [Fe(H₂O)₄(SCN)₂] (E) None is correct.
- 16. Which of the following complexes do you expect to be kinetically inert?
 - (A) $[Co(NH_3)_4]^{2+}$ (B) $[Fe(CN)_6]^{4-}$ (C) $[Zn(CN)_4]^{2-}$ (D) $[Ti(H_2O)_6]^{3+}$ (E) None is correct.
- 17. Which of the following complexes shows color?
 - $(A)[Zn(H_2O)_6](SO_4) \quad (B) \ [Cu(H_2O)_6]Cl \quad (C) \ [Cr(H_2O)_6]Cl_3 \quad (D) \ Cd(NO_3)_2 \quad (E) \ None \ is \ correct.$
- 18. Magnetic measurements indicate that $[Co(OH_2)_6]^{2+}$ has 3 unpaired electrons. Therefore, the hybridization of the metal's orbitals in $[Co(OH_2)_6]^{2+}$ is:
 - (A) sp^3 (B) sp^2d (C) dsp^2 (D) sp^3d^2 (E) d^2sp^3
- 19. Which one of the following statements is FALSE?
 - (A) In an octahedral crystal field, the d electrons on a metal ion occupy the eg set of orbitals before they occupy the t_{2g} set of orbitals.
 - (B) Diamagnetic metal ions cannot have an odd number of electrons.
 - (C) Low spin complexes can be paramagnetic.
 - (D) In high spin octahedral complexes, Δ_{oct} is less than the electron pairing energy, and is relatively very small.
 - (E) Low-spin complexes contain strong field ligands.

注:背面有試題

台灣聯合大學系統105學年度碩士班招生考試試題

類組: 化學類 科目: 綜合化學(1001)

頁第一頁

※請在答案卡內作答

20. Which of the following complexes has the greatest thermodynamic stability (en = $H_2N-CH_2CH_2-$ NH₂)? Note: assume a high-spin configuration for Mn in these complexes.

- (A) $[Mn(NH_3)_6]^{2+}$ (B) $[Zn(NH_3)_6]^{2+}$ (C) $[Mn(en)_3]^{2+}$ (D) $[Zn(en)_3]^{2+}$ (E) None is correct.

21. Place the following in order of increasing acid strength.

 H_2O

CH₃OH C₆H₅OH CH₃COOH

- (A) $CH_3OH < C_6H_5OH < H_2O < CH_3COOH$
- (B) H_2O < CH_3OH < C_6H_5OH < CH_3COOH
- (C) H_2O < C_6H_5OH < CH_3OH < CH_3COOH
- (D) $CH_3OH < H_2O < C_6H_5OH < CH_3COOH$
- (E) $C_6H_5OH < CH_3OH < H_2O < CH_3COOH$
- 22. Which of the following statements is TRUE?
 - (A) A strong acid is composed of a proton and an anion that have a very strong attraction for one another.
 - (B) A weak base is composed of a cation and an anion with a very weak attraction between them.
 - (C) A strong acid has a strong conjugate base.
 - (D) The conjugate base of a very weak acid is stronger than the conjugate base of a strong acid.
 - (E) None of the above statements are true.
- 23. Identify the missing particle in the following nuclear equation:

- (A) ${}^{141}_{52}$ Te (B) ${}^{144}_{54}$ Xe (C) ${}^{143}_{54}$ Xe (D) ${}^{143}_{52}$ Te (E) ${}^{92}_{38}$ Sr

- 24. Which of the following undergo nitration faster than benzene?

- (A) 4 and 5
- (B) 2, 3, and 5
- (C) 1 and 2
- (D) 3 and 4
- (E) 1, 4, and 5
- 25. What is the maximum motional contribution (including translational, rotational, and vibrational degrees of freedom) to the molar internal energy of gaseous CO₂, assuming ideal gas behavior?
 - (A) 6 RT
- (B) 6.5RT
- (C) 3.5RT
- (D) 3RT
- (E) 2.5RT

台灣聯合大學系統105學年度碩士班招生考試試題

類組: 化學類 科目: 綜合化學(1001)

※請在答案卡內作答

- 26. Consider two flasks at 100°C, one contains an ideal gas and the other contains the real gas SO₃. Which statement regarding these gases is TRUE?
 - (A) As the temperature is increased, the pressure of the ideal gas will be smaller than the pressure of SO₃ because the van der Waals coefficient *a* for SO₃ is large.
 - (B) As the temperature is decreased, the ideal gas will liquefy first because ideal gases have larger values of the van der Waals coefficient b.
 - (C) As the temperature is decreased, the pressure of the ideal gas will be smaller than the pressure of SO₃ because the van der Waals coefficient **b** for SO₃ is large.
 - (D) As the temperature is decreased, the volume of the ideal gas will be larger than the volume of SO₃ because the van der Waals coefficient a for SO₃ is large.
 - (E) As the temperature is increased, the volume of the ideal gas will be smaller than the volume of SO_3 because ideal gases have larger values of the van der Waals coefficient a.
- 27. The enthalpy change due to the reaction of one mole of C₂H₄ with water to form C₂H₅OH can be estimated by
 - (A) BE(C-C) + BE(O-H) 2BE(C-O) BE(C-H)
 - (B) BE(C=C) + BE(O-H) 2BE(C-C) BE(C-O)
 - (C) BE(C-H) + BE(C-O) BE(C-C) BE(O-H)
 - (D) BE(O-H) + BE(C=C) BE(C-H) BE(C-O) BE(C-C)
 - (E) BE(C-H) + BE(C-O) + BE(C-C) BE(O-H) BE(C=C)
- 28. Arrange these compounds in order of increasing standard molar entropy at 25°C: C₃H₈(g), C₂H₄(g), ZnS(s), and H₂O(l).

- (B) $C_2H_4(g) < H_2O(1) < C_3H_8(g) < NaCl(s)$
- (C) $ZnS(s) < C_3H_8(g) < C_2H_4(g) < H_2O(1)$
- (D) $C_3H_8(g) \le C_2H_4(g) \le H_2O(1) \le ZnS(s)$
- (E) $ZnS(s) < H_2O(l) < C_3H_8(g) < C_2H_4(g)$

29. The normal freezing point of ammonia is -78°C. Predict the signs of ΔH , ΔS , and ΔG for ammonia when it freezes at -80°C and 1 atm: NH₃(l) \rightarrow NH₃(s)

	ΔH	ΔS	ΔG
A.	_	_	0
B.		+	
C.	+		+
D.	+	+	0
E.			_

- (A) Choice A
- (B) Choice B
- (C) Choice C
- (D) Choice D
- (E) Choice E

台灣聯合大學系統105學年度碩士班招生考試試題

類組: 化學類 科目: 綜合化學(1001)

共_7_ 頁第_6_ 頁

※請在答案卡內作答

30. Calculate the standard free energy of formation of mercury(II) oxide at 298 K, given

	HgO(s)	Hg(I)	$O_2(g)$	
$\Delta H_{\rm f}^{\circ}$, kJ·mol ⁻¹ $S_{\rm m}^{\circ}$, J·K ⁻¹ ·mol ⁻¹	-90.83 70.29	- 76.02	- 205.14	
A) +58.5 kJ/mol	(B) +11	7.1 kJ/mo	ol (C)) —5

(D) -123.1 kJ/mol

- (C) -58.5 kJ/mol
- (E) -117.1 kJ/mol

31. For the reaction

$$2C(s) + 2H_2(g) \rightarrow C_2H_4(g)$$

 $\Delta H_r^{\circ} = +52.3 \text{ kJ·mol}^{-1}$ and $\Delta S_r^{\circ} = -53.07 \text{ J·K}^{-1} \cdot \text{mol}^{-1}$ at 298 K. This reaction will be spontaneous at

- (A) no temperature.
- (B) all temperatures.
- (C) temperatures below 985 K.

- (D) temperatures above 985 K.
- (E) temperatures below 1015 K.
- 32. A solution of chloroform (CHCl₃) and acetone((CH₃)₂CO) exhibits a negative deviation from Raoult's law. This result implies that
 - (A) chloroform-chloroform interactions are stronger than chloroform-acetone interactions.
 - (B) chloroform-chloroform interactions are weaker than chloroform-acetone interactions.
 - (C) acetone-acetone interactions are stronger than chloroform-acetone interactions.
 - (D) a solution of chloroform and acetone may exits a low-boiling azeotrope.
 - (E) None is correct.
- 33. If the standard potentials of Cu^{2+} and Cu^{+} are +0.34 and +0.54 V, respectively, please calculate E° of the following half reaction:

$$Cu^{2+}(aq) + e^{-} \rightarrow Cu^{+}(aq)$$

- (A) +0.20 V
- (B) -0.20 V
- (C) +0.68 V
- (D) -0.14 V
- (E) +0.14 V
- 34. At 10°C one volume of water dissolves 3.10 volumes of chlorine gas at 1.00 atm pressure. What is the Henry's Law constant in mol/L·atm?
 - (A) 0.043
- (B) 3.1
- (C) 0.13
- (D) 3.8
- (E) 36.
- 35. If E° for the following cell is 0.36 V at 25°C

Pb(s) | PbSO₄(s) | SO₄²-(aq, 0.90 M) || H⁺(aq, 1.20 M) | H₂(g, 271.2 kPa) | Pt

How is the Nernst equation for the cell properly expressed at this temperature?

- (A) $E = 0.36 0.01285 \cdot \ln[2.712/\{(1.20)^2(0.90)\}]$
- (B) $E = 0.36 0.02569 \cdot \ln[271.2/\{(1.20)(0.90)\}]$
- (C) $E = 0.36 0.01285 \cdot \ln[271.2/\{(1.20)^2(0.90)\}]$
- (D) $E = 0.36 + 0.01285 \cdot \ln[271.2/\{(1.20)^2(0.90)\}]$
- (E) $E = 0.36 0.02569 \cdot \ln[2.712/\{(1.20)(0.90)\}]$

注:背面有試題

類組: 化學類 科目: 綜合化學(1001)

有第_

※請在答案卡內作答

36. Consider the following reaction:

$$Ni(CO)_4(g) \rightarrow Ni(s) + 4CO(g)$$

If the initial concentration of $Ni(CO)_4(g)$ is 1.0 M, and X is the equilibrium concentration of CO(g), what is the correct equilibrium relation?

- (A) $K_c = X^4/(1.0 4X)$ (B) $K_c = X^4/(1.0 X/4)$ (C) $K_c = X/(1.0 X/4)$

- (D) $K_c = X^5/(1.0 X/4)$
- (E) $K_c = 4X/(1.0 4X)$

37. Which one of the following sets of quantum numbers is not possible?

n	1	\mathbf{m}_{l}	$\mathbf{m_s}$
A. 4	3	-2	+1/2
B. 3	2	-3	-1/2
C. 3	0	0	+1/2
D. 4	1	1	-1/2
E. 2	0	0	+1/2

- (A) Choice A
- (B) Choice B
- (C) Choice C
- (D) Choice D
- (E) Choice E

38. Which of the following statements is true?

- (A) A d-electron penetrates more than an s-electron through the inner shells of an atom.
- (B) A d-orbital has a spherical boundary surface.
- (C) An electron in an s-orbital has a zero probability of being found at the nucleus.
- (D) A p-electron experiences a smaller effective nuclear charge than an s-electron.
- (E) With the same principle quantum number, s-electron is more delocalized than f-electron.

39. Which of the following compounds is optically active?

- (A) NH₂C(CH₃)₂COOH
- (B) CH₃CHCH(Cl)
- (C) CH₃CH₂CH(NH₂)COOH

(D) CH₃OCH₃

(E) (CH₃)₂CHCONH₂

40. The structure of rubber, a polymer, is

What is the formula of the monomer used to produce rubber?

- (A) (CH₃)₂CCHCH₃
- (B) CH₃CCCH₃
- (C) CH₂CCCH₂
- (D) CH₂C(CH₃)CHCH₂

(E) CH₃CH(CH₃)CH₂CH₃