台灣聯合大學系統 104 學年度碩士班招生考試試題 共 4 頁 第 / 頁

類組: 化學類 科目: 物理化學(1004)

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 1. For one mole of ideal gas, which of the following are correct? (複選題,全對才給分) (5分) (Gas constant R= 8.31447 J mol⁻¹ K⁻¹= 0.08206 atm L mol⁻¹ K⁻¹)
 - (A) Kinetic energy is $\frac{3}{2}RT$, where T is the absolute temperature.
 - (B) Heat capacity under constant pressure $C_p = \frac{3}{2}R$
 - (C) Heat capacity under constant volume $C_v = \frac{5}{2}R$
 - (D) For an isothermal expansion from (4 atm, 2 L) to (2 atm, 4 L), the change of entropy $\Delta S = R \ln 2$.
 - (E) The volume at 273 K is 22.4 L.
- 2. One mole of ideal gas goes through an adiabatic expansion from (4 atm, 2 L) to 2 atm. Which of the following are correct? (複選題,全對才給分) (5 分)
 - (A) At 2 atm, the volume is larger than 4 L.
 - (B) At 2 atm, the volume is smaller than 4 L.
 - (C) During the expansion, there is no heat exchange.
 - (D) The work is $\frac{3}{2}R\Delta T$
 - (E) The change of internal energy $\Delta U = \frac{5}{2}R\Delta T$
- 3. For a particle (mass m) in a one-dimensional box (length= L) in quantum mechanics, the potential energy $V = \infty$ for x > L and x < 0, and V = 0 for $0 \le x \le L$. Which of the following are correct? (複選題,全對才給分) (5 分) (Planck's constant $h = 6.626 \times 10^{-34} \, \mathrm{J s}$)

(A)
$$E_n = \frac{n^2 h^2}{8mL^2}$$
, $n = 1, 2, 3, ...$

- (B) There are three nodes at n=3.
- (C) Expectation value of momentum $\langle \hat{p}_x \rangle = 0$
- (D) Expectation value of momentum squared $\langle \hat{p}_x^2 \rangle = \frac{n^2 h^2}{4L^2}$
- (E) Expectation value of position $\langle \hat{x} \rangle = 0.5 L$
- 4. For a quantized harmonic oscillator in quantum mechanics, which of the following are correct? (複選題,全對才給分) (5分) (Planck's constant ħ=1.054×10⁻³⁴ J s)

(A)
$$E_{\nu} = \hbar \omega (\nu + \frac{1}{2})$$
, $v = 0, 1, 2, ..., \omega = \sqrt{\frac{k}{\mu}}$, k: force constant, μ : reduced mass

- (B) There are three nodes for v = 3.
- (C) The potential energy is zero for v = 0
- (D) Expectation value of momentum $\langle \hat{p}_x \rangle = 0$
- (E) The zero-point energy is zero.

台灣聯合大學系統104學年度碩士班招生考試試題 共上上頁第三頁

類組: <u>化學類</u> 科目: <u>物理化學(1004)</u>

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- 5. The ground state oxygen atom has the electronic configuration: $[He]2s^22p^4$. With respect to the atomic term symbols for this electronic configuration, which of the following are correct? (複選題,全對才給分) (5 分)
 - (A) The atomic term symbols includes ${}^{3}D_{2}$
 - (B) The atomic term symbols includes ${}^{1}D_{2}$
 - (C) The atomic term symbols includes ${}^{1}P_{1}$
 - (D) The atomic term symbols includes ${}^{1}S_{0}$
 - (E) The atomic term symbol ${}^{3}P_{2}$ corresponds to the lowest energy.
- 6. Water (H_2O) molecule belongs to the C_{2v} point group symmetry. If we define the z-axis coincides with the C_2 rotational axis, while the x-axis is perpendicular to the plane containing the three atoms and the y-axis lies in the plane, which of the following are correct? (複選題,全對才給分) $(5\, \%)$

C_{2v} Point Group Character Table

C _{2v}	E	C_2	$\sigma(xz)$	σ(yz)	
A_1	1	1	1	1	z, x^2, y^2, z^2
A_2	1	1	-1	-1	R_z xy
B_I	1	-1	1	-1	R_y , x , xz
B_2	1	-1	-1	1	R_{x}, y, yz

- (A) The lone pairs of oxygen have A₁+B₁ symmetry representations
- (B) The σ bonds have A_1+B_2 symmetry representations
- (C) The vibrations have $2A_1 + B_2$ symmetry representations
- (D) Electronic transition from molecular orbital a_1 to molecular orbital b_1 is allowed.
- (E) Electronic transition from molecular orbital b_1 to molecular orbital b_2 is allowed.
- 7. With respect to hydrogen molecule (H₂), which of the following are correct? (複選題,全對才給分) (5分)
 - (A) H₂ can be observed by IR spectroscopy.
 - (B) H₂ can be observed by Raman spectroscopy.
 - (C) Para-H₂ refers to the paired nuclear spins.
 - (D) Ortho-H₂ refers to the parallel nuclear spins.
 - (E) The statistical weight between Para-H₂ and Otho-H₂ for a given J rotational level is 3:1.
- 8. With respect to the relaxation times $(T_1 \text{ and } T_2)$ in pulsed NMR spectroscopy, which of the following are correct? (複選題,全對才給分) (5 分)
 - (A) T₁ denotes the spin-lattice relaxation and is related to Zeeman energy exchange.
 - (B) T₂ denotes the spin-spin relaxation and is not related to Zeeman energy exchange.
 - (C) T₁ can be measured by spin echo technique.
 - (D) T₂ can be measured by inversion recovery technique.
 - (E) $T_1 \leq T_2$

類組:<u>化學類</u> 科目:<u>物理化學(1004)</u>

※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

非選擇題 (60%)

- 1. Answer the following questions with regard to CO_2 .
- (a) Carbonated beverages are typically made by using gaseous CO_2 . The Henry's law constant K_i for CO_2 in water is 1.6×10^8 Pa at room temperature. If the pressure of CO_2 in equilibrium with water is 4.8×10^5 Pa, estimate the molarity of CO_2 in the solution?
- (b) The slopes of the lines between the solid and liquid phases in the P-T phase diagrams of H_2O and CO_2 are very different. Comment on this based on the Clapeyron equation. (4%)
- (c) If CO_2 (1 mole) can be described by $V=(\frac{RT}{P})+b-(\frac{a}{RT^2})$, find the expression for the Boyle temperature in terms of a, b and R (a and b are constants). (6%). Also write the expression of ΔG for CO_2 that undergoes an isothermal expansion from P_1 to P_2 atm.
- 2. Instead of x = 0 to a for the particle in the 1-D box, the limits are now set to be $x = -\frac{a}{2}$ to $+\frac{a}{2}$. The general form of the wavefunction is:

$$\psi = A\sin(Kx) + B\cos(Kx)$$
 $-\frac{a}{2} \le x \le \frac{a}{2}$ where $K = \frac{\sqrt{2mE}}{\hbar}$

- (a) Derive acceptable wavefunctions with corresponding quantum numbers. (4%)
- (b) Without calculations, explain why $\int_{-a/2}^{+a/2} \psi_{n+1}^* \psi_n dx = 0 \text{ and } \int_{-a/2}^{+a/2} \psi_{n+1}^* \cdot x \cdot \psi_n dx \neq 0$ based on the results in (a). (4%)
- 3. β -Carotene plays important roles in the chemistry of human vision because it can be converted into two vitamin A molecules (structures shown below). The electronic spectrum of β -Carotene can be approximated using the particle in a 1-D box if one assumes that the conjugated double bonds consist of the entire system.

$$\beta$$
-Carotene

類組: 化學類 科目: 物理化學(1004) ※選擇題請在答案卡內作答,非選擇題請在答案卷內作答

- (a) If each box level can only have two π electrons and the π electronic transition has a maximum absorption band at 480 nm for β -Carotene, what you expect the absorption wavelength for vitamin A if the molecular length of vitamin A is half of that of β -Carotene? (5%)
- (b) The vision process begins when the cis-retinal absorbs a photon and is isomerized to be trans-retinal:

hν

cis- retinal \rightarrow trans-retinal (similar to vitamin A)

The activation energy for the isomerization reaction is 160 kJ/mol and the rate constant at 37 °C is 4×10^{11} s⁻¹. Assuming that an icefish lives in water at -3 °C, what is the rate constant if the same chemical process occurs in icefish eyes. (note: R = 8.0 J/mol·K; $e^{-9.56} = 7 \times 10^{-5}$) (5%)

4. Single-walled carbon nanotubes can be approximately by a particle-on-a-cylindrical-surface model. Suppose the cylinder has length / and radius α, with the z-axis along the cylinder. Combining ideas from the particle-in-a-box and 2D rigid rotor models, the Hamiltonian operator for this system is:

$$\hat{H}_{total} = \hat{H}_{box} + \hat{H}_{rotor} = -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial z^2} - \frac{\hbar^2}{2ma^2} \frac{\partial^2}{\partial \phi^2}$$
 (m: mass of electron)

(a) Write an expression for the energy.

(3%)

- (b) The wavefunction of this system can be written as $\psi(z,\phi) = N \cdot R(nz) \cdot Y(m\phi)$, where R(nz) and $Y(m\phi)$ are the wavefunctions obtained from the particle-in-a-box and 2-D rigid rotor, respectively, and N is the normalization constant. Write down the mathematical functions for R(nz) and $Y(m\phi)$. What are the allowed values of the quantum numbers n and m? (8%) Determine the normalization constant N.
- 5. An interesting example of consecutive reaction involves the absorption of ethyl alcohol by the body, which is a first-order process, and the consequent oxidation of alcohol to acetaldehyde by liver alcohol dehydrogenase (LADH), which is a zeroth-order process. The differential changes in the three states of ethanol can therefore be described as

$$-\frac{d[A]}{dt} = k_1[A]$$

$$\frac{d[B]}{dt} = k_1[A] - k_2$$

$$\frac{d[C]}{dt} = k_2$$

(a) Determine an integrated form for [B] over time.

(4%)

(b) Derive the expression for the time at which the concentration of the intermediate B reaches the maximum value. ([A] $_0 = 1.0 \text{ mol/L}$). (5%)