	國	立	清	華	大	學	命	題	紙	
九十五學年度微機電系統工程研究所系(所)組碩士班入學考試										
科目	電子學	科目代	碼2406	共	_3頁第	頁	*請在試	卷【答案	卷】內作答	

1. (15%) The circuit as shown contains passive elements and ideal operation amplifiers. The sub-circuit inside the dash-line box on the right is equivalent to an inductor.

(a) (10%) Please express the inductance value in terms of R_1 , C_2 , R_3 , R_4 , and R_5 .

(b) (5%) Write down the transfer function $V_0(s)/V_i(s)$.

2. (20%) The schematic of a state-variable filter as shown contains passive elements and ideal operational amplifiers. Please derive the transfer functions of $v_1(s)/v_i(s)$ and $v_3(s)/v_i(s)$.

3. (15%) The circuit shown is a Wilson current mirror made by bipolar-junction transistors. Assume the collector current is related to the base current by $I_c = \beta I_b$, please derive its current gain I_o/I_{REF} .

4. (10%)

- (a) (5%) Design V_G to let the drain current to be 1 mA, where $\mu_n C_{ox}$ = 100 μ A/V², L= 0.25 μ m, W= 5 μ m, and V_f= 0.7 V. (5)
- (b) (5%) If connect a source resistance between the source terminal of the MOSFET to ground, what is the value of R_s to reduce the gain by 20%?

國	立	清	華	大	學	命	題	紙
九一	十五學年度	微	機電	工程研	究所	碩一	上班入學考試	Ċ
科目	電子學 彩	日代碼	2406	_ 共 _3	頁第_3_頁	*請在	【答案卷】户	内作答

5. (15%) Analyze the active-loaded common-source amplifier shown below, where $I_{bias} = 50 \ \mu A$:

(a) (5%) Calculate the low-frequency small-signal gain (v_o/v_i) .

(b) (10%) Determine the 3-dB frequency f_{H} .

6. (25%) For the circuit shown below:

- (a) (10%) Determine A_d (dB) and A_{cm} (dB).
- (b) (5%) Determine the small-signal input resistance.
- (c) (10%) Assuming a load of 1pF is connected, plot CMRR (dB). Mark the important frequencies and slopes.

Circuit parameters:

 $(W/L)_3 = (W/L)_4 = (W/L)_5 = 20$ $R_c = 50 \text{ K}, (V_A)_{BJT} = 50 \text{ V}, \beta = 100,$ $(V_A)_{MOS} = 20 \text{ V}, (C_{gd})_{MOS} = 50 \text{ fF},$ neglect all other capacitances.