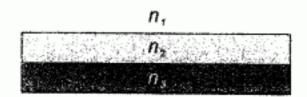
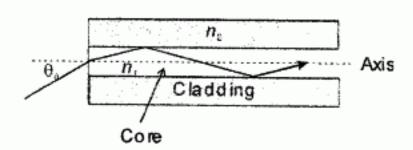

九十三學年度 微機電系統工程研究所 系 (所) 组碩士班入學考試 科目 艺术教 写 科號 上上 生 土 頁第 1 頁 *請在試卷【答案卷】內作答

- 1. Determine true or false for the following nulls and give a brief explanation.
 - (a) $\nabla(\nabla \times \overrightarrow{A}) = 0$, where \overrightarrow{A} is any vector in space.
 - (b) $\nabla \times (\nabla V) = 0$, where V is any scalar in space.
 - (c) $\nabla \times (\nabla \cdot \vec{A}) = 0$, where \vec{A} is any vector in space.
 - (d) $\nabla \cdot (\nabla V) = 0$, where V is any scalar in space.
 - (e) $\nabla \cdot (\nabla \times \vec{A}) = 0$, where \vec{A} is any vector in space.
- There is a hole on a charged (Q₀) metal sphere shell. Please find the electric field in the center of the hole. Note that the hole is negligible in size.



- Determine the resistance between two concentric spherical surfaces of radii R₁ and R₂ (R₁<R₂), assuming that a material of conductivity σ = σ₀(1-k/R) fills the space between them. (Note: Laplace's equation for V does not apply here)
- 4. A toroidal core has a rectangular cross section defined by the surfaces R=2cm (radius), R=3cm, z=4cm, and z=5cm. The core material has a relative permeability of 60. If the core is wound with a coil containing 10000 turns of wire, find its inductance.
- 5. A kind of liquid solution at frequency v = 8×10⁸ Hz has permittivity ε=80ε₀, permeability μ=μ₀, and resistivity ρ=0.2Ω · m. What is the ratio of conduction current to displacement current?

國立清華大學命題紙


九十三學年度 微機電系統工程研究所 系 (所) 理 組碩士班入學考試
科目 第 5 5 7 7 7 7 4 2 頁第 2 頁 *請在試卷【答案卷】內作答

- A lens made of glass with refractive index 1.6 has a focal lens of 0.5 m in air. What is the focal length in water? The refractive index of water is 1.333.
- 7. What is the origin of rainbow? Consider the geometry of a parallel beam of sunlight striking a spherical rain drop, prove that here are actually two rainbows. Show your reasoning by drawing a picture.
- 8. Two equal sources radiate a wavelength λ and are separated a distance λ/4. There is a phase difference δ₀ = π/2 between the signals at source. If the intensity of each source is I_s, show that the intensity of the radiation pattern is given by I = 4I_s[cos² π/4 (1+sin θ)], where θ is the angle of observation.
- Light of wavelength λ in a medium of refractive index n₁ is normally incident on a thin film of refractive index n₂ and optical thickness λ/4 which coat a plane substrate of refractive index n₃. Show that the film is a perfect anti-reflector (reflectivity is zero) if (n₂)²=n₁n₃.

10. A step-index optical fiber shown below has a central core of index n₁ surrounded by a cladding of index n₂ where n₂ < n₁. From Snell's law, prove that the condition for the total internal reflection is:

 $\sin \theta_0 < \sqrt{n_1^2 - n_2^2}$ for light incident from air (refractive index = 1).

