國立清華大學命題紙 九十三學年度<u>微機電系統工程研究</u>(系)所<u>伊</u>組碩士班入學考試 科目<u>數學</u>科號 <u>>Ψοン 共 2 頁第 1 頁 *請在試卷【答案卷】內作答</u>

1. Let $f = 4x^2 + xy^2 + 9y^3z^2$ (scalar function) and $\mathbf{v} = xz\mathbf{i} + (x - y)^2\mathbf{j} + 2x^2yz\mathbf{k}$ (vector function). Find

(a)
$$\nabla^2 f$$
 (5%)

(b)
$$curl(grad f)$$
 (5%)

(c)
$$\nabla f \bullet curl V$$
 (5%)

Solve the following first-order differential equation for u(t):

$$\frac{du}{dt} = \exp(t + u), \ u(0) = 1 \tag{10\%}$$

3. For a matrix $A = \begin{bmatrix} 1 & 1 \\ -2 & 4 \end{bmatrix}$,

(a) Find the 2x2 matrix
$$P$$
 and D , such as $P^{I}AP=D$ where D is a diagonal matrix. (5%)

- (b) Find the eigenvalues and the corresponding eigenvectors for f(A), where f(x) = 5x + 2. (5%)
- Use Laplace transforms to solver the following equations for y(t)

(a)
$$\frac{d^2y}{dt^2} + y = \cos(2t)$$
, where $t \ge 0$, $y(0) = 1$, and $\frac{dy(0)}{dt} = 0$. (10%)

(b)
$$y(t) = 6t + \int_{0}^{t} y(t-s)\sin(s)ds$$
, $t \ge 0$. (10%)

Evaluate the following integrals by using Fourier Transform.

(a)
$$\int_{0}^{\infty} \frac{dx}{x^2 + 1}$$
 (5%)

(b)
$$\int_{0}^{\infty} \frac{\sin(ax)}{\sinh(bx)} dx$$
 (10%)

(Hint:
$$e^{ikx} = \cos kx + i\sin kx$$
 and $\sinh(bx) = \frac{\exp(bx) - \exp(-bx)}{2}$)

6. Solve the following second-order differential equation for u(t):

$$t^{2} \frac{d^{2}u}{dt^{2}} + t \frac{du}{dt} + 4u = \sin[\ln(t)]$$
 (10%)

國立清華大學命題紙 九十三學年度<u>微機電系統工程研究</u>(系)所<u>中</u>組碩士班入學考試 科目<u>數學</u>科號 ユルロン 共 2 頁第 2 頁 *請在試卷【答案卷】內作答

7. Below is so called the one-dimensional wave equation,

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

- (a) Find the deflection u(x,t) of the vibrating string based on the following conditions, (14%)
 - Boundary conditions: u(0,t) = 0 and u(L,t) = 0 for all t.
 - Initial conditions: u(x,0) = f(x) and $\frac{\partial u}{\partial t}\Big|_{t=0} = g(x)$.
- (b) Find the deflection u(x,t) by using the derived result from (a) and the following functions and (6%)parameters,
 - c=1 and $L=\pi$.
 - f(x) = 0 and $g(x) = 0.1\sin(2x)$.