國 立 清 華 大 學 命 題 紙

九十二學年度 微機電系統工程研究 (系)所 組碩士班研究生招生考試科目 應用數學 科號 2202 共 2 頁第 1 頁 *請在試卷【答案卷】內作答

1. Solve the following first-order differential equation:

$$y'(x) = \frac{2y}{x(y-1)}$$
(10%)

2. Solve the following second-order differential equation:

$$(x+1)^2 y''(x) + 2(x+1)y'(x) - 4y(x) = 2x+1$$
(15%)

3. Find the eigenvalues and the corresponding eigenvectors for the matrix A.

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 2 \end{bmatrix} \tag{15\%}$$

4. (a) Prove
$$\mathcal{L}[f(t)] = sF(s) - f(0)$$
 if the Laplace transform of $f(t)$ is $\mathcal{L}[f(t)] = F(s)$. (5%)

(b) Find the inverse Laplace transform,
$$\mathcal{I}^{-1}\left[\frac{3s+1}{(s-1)(s^2+1)}\right]$$
 (5%)

5. If \overline{V} is a vector function, show the following

$$(1) \nabla \bullet (\nabla \times \overline{V}) = 0. \tag{5\%}$$

(2)
$$(\overline{V} \bullet \nabla)\overline{V} = (\nabla \times \overline{V}) \times \overline{V} + \nabla(V^2/2)$$
. (5%)

(3)
$$(\nabla \times \overline{V}) \times \overline{V}$$
 is normal to \overline{V} .

6. Evaluate the integrals $\int_{-\infty}^{\infty} \frac{\cos kx}{(x-a)^2 + b^2} dx \text{ and } \int_{-\infty}^{\infty} \frac{\sin kx}{(x-a)^2 + b^2} dx \text{ for k>0 by using Fourier Transform.}$

(Hint:
$$e^{ikx} = \cos kx + i\sin kx$$
) (15%)

國立清華大學命題紙

九十二學年度 微機電系統工程研究 (系)所 組碩士班研究生招生考試科目 應用數學 科號 2202 共 2 頁第 2 頁 *請在試卷【答案卷】內作答

7. A monocycle shown below moves at a constant velocity v₀ hitting a bump along x direction. Assume the mass of the suspension and wheel assemble is negligible.

(a) Please derive the second order govern equation of this system as below

$$\frac{d^2u(t)}{dt^2} + \frac{d[u(t)]}{dt} + 5u(t) = y(t) \qquad where \begin{cases} y = y_0 \sin^2(8t) & (0 < x < \pi/8) \\ = 0 & (x < 0, x > \pi/8) \end{cases}$$

- The relation between spring constant k and mass m is k/m = 5, the damping constant C and mass m is C/2m = 1, and the constant velocity is $v_0 = 8$.
- The bump condition: $\begin{cases} y = y_0 \sin^2 x & (0 < x < \pi) \\ = 0 & (x < 0, x > \pi) \end{cases}$

(Hint: Start from relative parameter u(t)-y(t). Find relationship between x and t, then make derived PDE to be u(t) only equation.) (3%)

- (b) Solve the PDE you derived above if C = 0 (no damping case). (14%)
- (c) Continue from (b), and find $\frac{u(t)}{y_0}$ if initial conditions are u(0) = 0 and $\frac{du(t)}{dt}\Big|_{t=0} = 0$. (3%)