99 學年度 工業工程與工程管理學系工業工程組甲組 碩士班入學考試

科目 作業研究 科目代碼 1402 共 1四 頁第 / 頁

*請在【答案卷卡】作答

注意事項: (1) 不得使用計算器。

- (2) 請依題號順序作答。
- (3) 答案必須寫在答案卷上,並須依每一題規定的方式作答。
- (4) 未依規定方式作答,酌量扣分。

20%

1. True (T) or False (F)? 以下是非題每一小題2分,但答錯一小題**倒扣**2分,最多只扣到本題0分,必須在答案卷畫出以下表格並在表格內填寫答案。

題目1	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
答案										

(1) $(x_1, x_2) = (2, 6)$ is an optimal solution of the following linear program

Maximize
$$3x_1 + 5x_2$$

subject to $x_1 \le 4$
 $2x_2 \le 12$
 $3x_1 + 2x_2 \le 18, x_1 \ge 0, x_2 \ge 0$

and $(y_1, y_2, y_3) = (0, \frac{3}{2}, 1)$ is an optimal solution of its dual problem

Minimize
$$4y_1 + 12y_2 + 18y_3$$

subject to $y_1 + 3y_3 \ge 3$
 $2y_2 + 2y_3 \ge 5, \quad y_1 \ge 0, y_2 \ge 0, y_3 \ge 0.$

We can conclude that $(x_1, x_2, x_{new}) = (2, 6, 0)$ is an optimal solution of the following problem.

Maximize
$$3x_1 + 5x_2 + 5x_{new}$$

subject to $x_1 + 3x_{new} \le 4$
 $2x_2 + 2x_{new} \le 12$
 $3x_1 + 2x_2 + x_{new} \le 18, x_1 \ge 0, x_2 \ge 0, x_{new} \ge 0.$

- (2) For any payoff table of a two-person zero-sum game, if mixed strategies are allowed, then there exists at least one stable solution.
- (3) We can construct a linear program which has exact two distinct feasible

99 學年度 工業工程與工程管理學系工業工程組甲組 碩士班入學考試 科目 作業研究 科目代碼 1402 共 四 頁第 2 頁 *請在【答案卷卡】作答

solutions.

- (4) The feasible region of any given linear program must be a convex set.
- (5) The optimal solution of a linear program may not be an extreme point.
- (6) Once a primal LP has no feasible solution, we know that its dual is unbounded.
- (7) The simplex method can solve the maximum flow problem.
- (8) The following linear fractional program can be transformed into a linear program.

Maximize
$$f(\mathbf{x}) = \frac{\mathbf{c}\mathbf{x} + c_0}{\mathbf{d}\mathbf{x} + d_0}$$

subject to $\mathbf{A}\mathbf{x} \le \mathbf{b}, \ \mathbf{x} \ge \mathbf{0}.$

- (9) In order to obtain a basic feasible solution, the surplus variables must be 0 in the two-phase method.
- (10) In an LP model, adding an additional constraint can improve the value of the objective function.

15%

2. Consider the following linear program.

Maximize
$$5x_1 + 2x_2 + 3x_3$$

subject to $x_1 + 5x_2 + 2x_3 \le b_1$
 $x_1 - 5x_2 - 6x_3 \le b_2, x_1, x_2, x_3 \ge 0.$

Let x_4 , and x_5 be the slack variables of constraints 1 and 2 respectively. Specific constant values of b_1 and b_2 produce the following tableau.

Basic							
Variable	Z	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	x_5	RHS
z	1	0	A1	A2	A3	0	D
x_1	0	1	B1	2	B2	0	30
x_5	0	0	C1	-8	C2	1	10

Determine b_1 , b_2 , A1, A2, A3, B1, B2, C1, C2, and D. <u>必須在答案卷畫出以下表格並在表格內填寫答案</u>。

99 學年度 工業工程與工程管理學系工業工程組甲組 碩士班入學考試

科目作業研究科目代碼 1402 共 1四 頁第 3 頁

*請在【答案卷卡】作答

	題目 2	b_1	<i>b</i> ₂	A 1	A2	А3	B1	132	Cl	C2	D	
100 miles	答案			7. 6		٠.						
4	A STANSON HER STANSON STANSON	A R. A. S.	1.5	10 June 2016	1 2 2 2 2 2 2	- 12	<u> </u>			L		J . s

15%

3. Consider the following linear program.

Maximize
$$c_1x_1 + c_2x_2$$

subject to $a_{11}x_1 + a_{12}x_2 \le b_1$
 $a_{21}x_1 + a_{22}x_2 \le b_2$
 $a_{31}x_1 + a_{32}x_2 \le b_3, x_1, x_2 \ge 0.$

Let x_3 , x_4 , and x_5 be the slack variables of constraints 1, 2, and 3 respectively. The optimal tableau is given as follows.

Basic							
Variable	z	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	x ₅	RHS
Z	1	9/2	0	0	0	5/2	40
<i>x</i> ₃	0	1	0	1	0	0	4
x_2	0	3/2	1	0	0	1/2	9
<i>x</i> ₄	0	-3	0	0	1	-10	6

Solve the following linear program with one additional constraint.

Maximize
$$c_1x_1 + c_2x_2$$

subject to $a_{11}x_1 + a_{12}x_2 \le b_1$
 $a_{21}x_1 + a_{22}x_2 \le b_2$
 $a_{31}x_1 + a_{32}x_2 \le b_3$
 $2x_1 + 3x_2 \le 24, x_1, x_2 \ge 0.$

Determine the optimal value and the optimal primal solution.

必須在答案卷畫出以下表格並在表格內填寫答案。

題目3	optimal value	x_1^*	<i>x</i> ₂ *	x_3^*	x_4^*	x_5^*
答案		·		· ·		

99 學年度 工業工程與工程管理學系工業工程組甲組 碩士班入學考試 科目 作業研究 科目代碼 1402 共 四 頁第 4 頁 *請在【答案卷卡】作答

15%

- 4. Explain the following terminology in queueing system.:
 - (1) M/G/s/K Model (8%)
 - (2) Jackson Network (7%)

15%

5. Airplanes arrive for take-off at the runway of an airport according to a Poisson process at a mean rate of 20 per hour. The time required for an airplane to take off has an exponential distribution with a mean of 2 minutes, and this process must be completed before the next airplane can begin to take off. Because a brief thunderstorm has just begun, all airplanes which have not commenced take-off have just been grounded temporarily. However, airplanes continue to arrive at the runway during the thunderstorm to await its end. Assuming steady-state operation before the thunderstorm, determine the expected number of airplanes that will be waiting to take off at the end of the thunderstorm if it lasts 30 minutes.

20%

- 6. Customers arrive at a fast food restaurant with one server according to a Poisson process at a mean rate of 20 per hour. The server has just resigned, and the two candidates for the replacement are X (fast but expensive) and Y (slow but inexpensive). Both candidates would have an exponential distribution for service times with X having a mean of 1.2 minutes and Y having a mean of 1.5 minutes. Restaurant revenue per month is given by \$3,000/W where W is the expected waiting time (in minutes) of a customer in the system.
 - (1) Determine the expected waiting time of a customer in the system by hiring either X or Y. (10%)
 - (2) Determine the upper bound on the difference in their monthly compensations that would justify hiring X rather than Y. (10%)