	國	立 清	華	大	學	命	題	紙
	95 學年度	工業工程與工程	管理學系	(所)	1、乙、丙	組 碩士	- 班入學:	考試
科目	統計學_	科目代碼 <u>2001、</u>	2101 . 22	<u>.01</u> 共 <u>3</u>	頁第_/_	頁 *請	生【答案	卷卡】內作答
								1
	1. (50	pts.) True or Fal	se					
	(2)	When choosing	from a set	of possil	ole point e	etimetor	e o rooci	anable an-
	(a)	proach is to cho	ose the es	timator w	vith the sn	nallest m	ean squa	red error.
	(b)	We call $\hat{\Theta}$ an un	biased est	imator of	f θ if Var($\hat{\Theta}) = \theta.$		
	(c)	If $\hat{\Theta}$ is unbiased identical to the	l estimato variance c	or of θ , to $\hat{\Theta}$.	hen the n	nean squ	ared erro	or of $\hat{\Theta}$ is
	(d)	The mean squar expected value of	ed error of $\hat{\Theta}$.	of $\hat{\Theta}$ is de	fined by I	$E(\hat{\Theta} - \mu_{\hat{e}}^2)$), where	$\mu_{\hat{\Theta}}$ is the
(e) The standard error of a statistic is the variance of the						nce of the	e statistic	
(f) If X_1, \ldots, X_n are independent identically distributed (i.i.d.) random var ables, then the sample mean $\overline{X}_n = \sum_{i=1}^n X_i/n$ follows a normal distribution for any n .						ndom vari- l distribu-		
	(g)	All estimators a	re statisti	cs, but sc	me statist	ics are n	ot estima	ators.
	(h)	Applying centra to be assumed.	l limit the	eorem, no	rmality of	f the rand	dom sam	ples needs
	(i)	Suppose that T Z follows a stan	follows a dard norr	t distrib nal distril	ution with oution. P(degrees $(T > 2) \ge$	of freedo $\geq P(Z > $	om 10 and 2).
	(j)	If $X_1, X_2,, X$ σ^2 , it is also cal	_n follow a led a rand	normal d lom samp	listributio le.	n with m	ean μ an	d variance
	(k)	Suppose that we We know that t	obtain a s he unknow	95% confi wn mean	dence of tl satisfies 6	he mean $\mu \leq 5.5 \leq \mu \leq 10^{-1}$	u to be (6 ≤ 68.4.	65.5, 68.4).
	(1)	Suppose that we We know that F	obtain a $P(65.5 \leq \mu$	$95\% \text{ confi} \\ \iota \leq 68.4)$	dence of tl = 0.95.	he mean ,	u to be (6	65.5, 68.4).
	(m)	Suppose that we $(0.5, 0.6)$. We k long run only 95 p , but we don't	e obtain a now that % of the i know whe	95% con if we repe ntervals v ether (0.5	fidence of eat the exp vould inclu , 0.6) inclu	the prop periment ide the u udes <i>p</i> or	ortion p many tir nknown p not.	to be nes, in the proportion

國	立	清	華	大	學	命	題	紙
95 學年月	度工業工:	程與工程	管理學系	(所)_	甲、乙、丙	組 碩士	班入學考	き試

科目 _ 統計學 科目代碼 2001、2101、2201 共 3 頁第 2 頁 *請在 【答案卷卡】 內作答

(n) The life in hours of a battery is known to be approximately normally distributed, with standard deviation $\sigma = 2$ hours. A claim is made that the battery life exceeds 50 hours. Applying the testing-hypothesis approach to make a conclusion, reasonable statistical hypotheses are $H_0: \overline{X} = 50, H_1: \overline{X} > 50$, where \overline{X} is the sample mean.

2

(o) Suppose that voters, choosing between a Republican and a Democratic candidate, give the Republican p×100% of the votes. We take a random sample of all voters. Consider the statistical hypotheses:
H₀: p ≤ 0.5, H₁:p > 0.5. Type I error means that we claim that the Republican will receive no more than half of the votes given that Republican will lose.

(p) Suppose that voters, choosing between a Republican and a Democratic candidate, give the Republican $p \times 100\%$ of the votes. We take a random sample of all voters. Consider the statistical hypotheses: H₀: $p \leq 0.5$, H₁: p > 0.5. Suppose that we take a sample of size n and make a decision that we reject the null hypothesis. That means that the testing-hypothesis approach has helped us to see the true: "Republican will win".

- (q) Consider the two-sided test for the ratio of two variances: $H_0: \sigma_1^2/\sigma_2^2 = 1$, $H_1: \sigma_1^2/\sigma_2^2 \neq 1$. If the testing-hypothesis results show that we fail to reject H_0 , then it is true that $\sigma_1^2 = \sigma_2^2$.
- (r) Consider a one-sided test for the unknown parameter θ : $H_0: \theta = 1, H_1: \theta > 1$. Suppose that the sampling distribution of $\hat{\theta}$ is normal. If the $\hat{\theta}$, the estimate of θ , is 0.9, we will always fail to reject H_0 if the significance level α is less than 0.5.
- (s) The usual 95% confidence of the variance σ^2 is $(S^2 c \operatorname{se}(S^2), S^2 c \operatorname{se}(S^2))$, where S^2 is the sample variance, $\operatorname{se}(S^2)$ is the standard error of S^2 , and c is some constant.
- (t) Let θ denotes the population mean μ or the difference of two means $\mu_1 \mu_2$. If the standard error of the corresponding estimator $\hat{\Theta}$ is known, then the usual 95% confidence of the population parameter θ is $(\hat{\theta} c \operatorname{se}(\hat{\Theta}), \hat{\theta} + c \operatorname{se}(\hat{\Theta}))$, where $\operatorname{se}(\hat{\Theta})$ is the standard error of $\hat{\Theta}, \hat{\theta}$ is the point estimate, and c is some constant.

國立清華大學命題紙

95學年度工業工程與工程管理學系(所)___、乙、丙組_ 碩士班入學考試

科目 <u>統計學</u> 科目代碼 <u>2001、2101、2201</u> 共 <u>3</u>頁第<u>3</u>頁 <u>*請在【答案卷卡】內作答</u>

2. (8 pts.) Consider a bag containing two white and four black balls, and two balls are drawn at random without replacement from the bag. Let X and Y be random variables representing the results of the 1st and 2nd drawings, respectively. Let 0 correspond to draw a black ball and 1 correspond to draw a white ball. Find $f_X(x), f_Y(y), f_{X,Y}(x, y)$ and $f_{Y|X}(y|x)$.

3

- 3. (8 pts.) (Let the three-dimensional random variable (X_1, X_2, X_3) have the density function $f_{X_1,X_2,X_3}(x_1, x_2, x_3) = cx_1x_2x_3$ for $0 < x_1, x_2, x_3 < 1$. Find c, the expected values $E(3X_1 + 2X_2 + 6X_3)$, $E(X_1X_2X_3)$, and $E(X_1X_2)$.
- 4. (10 pts.) Graph the pairs of points below. Find the least squares regression line and the standard error of estimate. How many values of Y are within 1 standard deviation or standard error from the regression line?

X	9	6	8	5
Y	5	3	5	3

5. (10 pts.) The sample variance is given by the formula:

$$S_X^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X})^2,$$

where X_i denotes the i^{th} observation in the random sample and \bar{X} denotes the sample mean.

- (a) Show that S_X^2 is a biased estimator of the population variance σ^2 ,
- (b) Construct an unbiased estimator of σ^2 , and then show that the unbiased estimator is consistent.
- 6. (6 pts.) State the Central Limit Theorem.
- 7. (8 pts) Tom and Joe like to throw darts. Tom throws 100 times and hits the target 54 times; Joe throws 100 times and hits the target 49 times. Find a 95 percent confidence interval for p_1, p_2 where p_1 and p_2 represent the true proportions of hits in Tom's and Joe's tosses, respectively. Note that $z_{0.05} = 1.645, z_{0.025} = 1.96$, where z_{α} is the value such that $P(Z > z_{\alpha}) = \alpha$ and Z follows a standard normal distribution.