94 學年度 工業工程與工程管理學系 工業工程組甲組 碩士班入學考試 科目 作業研究(含線性規劃與等候線理論) 科目代碼 1902 共 2 頁第 1 頁 *請在試卷【答案卷】內作答不得使用計算器 - 注意事項: (1) 請依題號順序作答。 - (2) 答案必須寫在答案卷上,計算過程與推導可寫在答案卷上,但答案須依每一題規定的方式作答。 20% 1. True (T) or False (F)? <u>是非題每一小題 2 分</u>, 但答錯一小題倒扣 2 分, 最多只扣到本題 0 分, 必須在答案 卷畫出以下表格並在表格內填寫答案。 | 題目 | (1-1) | (1-2) | (1-3) | (1-4) | (1-5) | (1-6) | (1-7) | (1-8) | (1-9) | (1-10) | |----|-------|-------|-------|-------|-------|-------|-------|-------|-------|--------| | 答案 | | | | * | 5 | | • | | | | - (1-1) If a waiting customer becomes impatient, he may decide to renege. - (1-2) Jockeying is exercised by customers in a single-server facility in the hope of reducing their waiting time. - (1-3) In a queuing system, if the arrivals occur according to a Poisson distribution, the interarrival time is exponential distributed. - (1-4) The mean and variance of the Poisson distribution may not be equal. - (1-5) Under the Poisson assumption, two arrivals can occur during a very small time interval. - (1-6) An arriving customer may balk if he expects a long waiting time. - (1-7) If the time between successive arrivals is exponential, the time between the occurrence of every third arrival is also exponential. - (1-8) The arrival rate in the Poisson distribution equals the mean of the exponential interarrival time. - (1-9) In a single-server queuing system, steady state can be reached after a sufficiently long period only if the arrival rate is less than the service rate. - (1-10) In the preemptive priority queues, a service can be interrupted in favor of an arriving customer with higher priority. 10% 2. (2-1) Consider the following one-step transition matrix of a Markov chain (with states 0, 1, 2, 3, 4). | States | 0 - | 1 | 2 | 3 | 4 | |--------|---|---------------|---------------|---------------|--| | 0 | $\left[\begin{array}{c} \frac{1}{4} \end{array}\right]$ | $\frac{3}{4}$ | 0 | 0 | 0 | | 1 | $\frac{3}{4}$ | $\frac{1}{4}$ | 0 | 0 | 0 | | 2 | $\frac{1}{3}$ | $\frac{1}{3}$ | $\frac{1}{3}$ | 0 | 0 | | 3 | 0 | 0 | 0 | $\frac{3}{4}$ | $\frac{1}{4}$ | | 4 | 0 | 0 | 0 | $\frac{1}{4}$ | $\begin{bmatrix} \frac{1}{4} \\ \frac{3}{4} \end{bmatrix}$ | Determine the classes of the Markov chain and whether they are recurrent. 94 學年度 工業工程與工程管理學系 工業工程組甲組 碩士班入學考試 科目 作業研究(含線性規劃與等候線理論) 科目代碼 1902 共 2 頁第 2 頁 *請在試卷【答案卷】內作答 (2-2) Consider an M/M/1 system with mean arrival rate λ and service rate μ , Give $P\{W_q > t\}$ for $t \ge 0$. (必須有推導過程,提示 $P\{W > t\} = e^{-\mu(1-\rho)t}, \rho = \lambda/\mu, t \ge 0$ 。) 20% 3. Consider a queuing system consisting of two series stations as shown below. A customer arriving for service must go through station 1 and station 2. Service time at each station are exponential distributed with the same service rate μ . Arrivals occur according to a Poisson distribution with rate λ . No queues are allowed in front of station 1 and station 2. Each station may be either **free** or **busy**. Station 1 is said to be **blocked** if the customer in this station completes his or her service before station 2 becomes free. In this case, the customer cannot wait between the stations since this is not allowed. Let 0, 1, and b represent the free, busy, and blocked states, respectively. Let i and j represent the states of states of station 1 and station 2. Then the states of the system are given by $$\{(i,j)\} = \{(0,0), (0,1), (1,0), (1,1), (b,1)\}.$$ Let $p_{ij}(t)$ be the probability that the system is in state (i, j) at time t. - (3-1) Give the transition probabilities between times t and t + h (h is a small positive increment in time.) - (3-2) Give the steady-state equations. - (3-3) Solve $p_{00}, p_{01}, p_{10}, p_{11}, p_{b1}$. - (3-4) Find the expected number in the system L_s . 25% - 4. Consider a maximization linear programming problem - (4-1) Write down this model with specific dimensions. - (4-2) State the Simplex Algorithm and estimate its complexity. - (4-3) State the possibilities of the feasible solutions with the respective conditions. - (4-4) State the possibilities of the optimal solutions with the respective conditions. - (4-5) State how to calibrate the model if the model has (a).no feasible solution; (b) no optimal solution. 25% - 5. Giving the maximization LP model as in problem (4-1) - (5-1) Define the respective dual model. - (5-2) State the relation of these two models and provide the evidence. - (5-3) State which model should be used and why in terms of (a). Efficiency in finding solutions. - (b). Sensitivity Analysis