94 學年度 工業工程與工程管理學系 工業工程組甲組 碩士班入學考試 科目 作業研究(含線性規劃與等候線理論) 科目代碼 1902 共 2 頁第 1 頁 *請在試卷【答案卷】內作答不得使用計算器

- 注意事項: (1) 請依題號順序作答。
 - (2) 答案必須寫在答案卷上,計算過程與推導可寫在答案卷上,但答案須依每一題規定的方式作答。

20%

1. True (T) or False (F)? <u>是非題每一小題 2 分</u>, 但答錯一小題倒扣 2 分, 最多只扣到本題 0 分, 必須在答案 卷畫出以下表格並在表格內填寫答案。

題目	(1-1)	(1-2)	(1-3)	(1-4)	(1-5)	(1-6)	(1-7)	(1-8)	(1-9)	(1-10)
答案				*	5		•			

- (1-1) If a waiting customer becomes impatient, he may decide to renege.
- (1-2) Jockeying is exercised by customers in a single-server facility in the hope of reducing their waiting time.
- (1-3) In a queuing system, if the arrivals occur according to a Poisson distribution, the interarrival time is exponential distributed.
- (1-4) The mean and variance of the Poisson distribution may not be equal.
- (1-5) Under the Poisson assumption, two arrivals can occur during a very small time interval.
- (1-6) An arriving customer may balk if he expects a long waiting time.
- (1-7) If the time between successive arrivals is exponential, the time between the occurrence of every third arrival is also exponential.
- (1-8) The arrival rate in the Poisson distribution equals the mean of the exponential interarrival time.
- (1-9) In a single-server queuing system, steady state can be reached after a sufficiently long period only if the arrival rate is less than the service rate.
- (1-10) In the preemptive priority queues, a service can be interrupted in favor of an arriving customer with higher priority.

10%

2. (2-1) Consider the following one-step transition matrix of a Markov chain (with states 0, 1, 2, 3, 4).

States	0 -	1	2	3	4
0	$\left[\begin{array}{c} \frac{1}{4} \end{array}\right]$	$\frac{3}{4}$	0	0	0
1	$\frac{3}{4}$	$\frac{1}{4}$	0	0	0
2	$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	0	0
3	0	0	0	$\frac{3}{4}$	$\frac{1}{4}$
4	0	0	0	$\frac{1}{4}$	$\begin{bmatrix} \frac{1}{4} \\ \frac{3}{4} \end{bmatrix}$

Determine the classes of the Markov chain and whether they are recurrent.

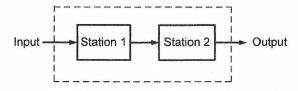
94 學年度 工業工程與工程管理學系 工業工程組甲組 碩士班入學考試 科目 作業研究(含線性規劃與等候線理論) 科目代碼 1902 共 2 頁第 2 頁 *請在試卷【答案卷】內作答

(2-2) Consider an M/M/1 system with mean arrival rate λ and service rate μ ,

Give $P\{W_q > t\}$ for $t \ge 0$. (必須有推導過程,提示 $P\{W > t\} = e^{-\mu(1-\rho)t}, \rho = \lambda/\mu, t \ge 0$ 。)

20%

3. Consider a queuing system consisting of two series stations as shown below.



A customer arriving for service must go through station 1 and station 2. Service time at each station are exponential distributed with the same service rate μ . Arrivals occur according to a Poisson distribution with rate λ . No queues are allowed in front of station 1 and station 2. Each station may be either **free** or **busy**. Station 1 is said to be **blocked** if the customer in this station completes his or her service before station 2 becomes free. In this case, the customer cannot wait between the stations since this is not allowed. Let 0, 1, and b represent the

free, busy, and blocked states, respectively. Let i and j represent the states of states of station 1 and station 2.

Then the states of the system are given by

$$\{(i,j)\} = \{(0,0), (0,1), (1,0), (1,1), (b,1)\}.$$

Let $p_{ij}(t)$ be the probability that the system is in state (i, j) at time t.

- (3-1) Give the transition probabilities between times t and t + h (h is a small positive increment in time.)
- (3-2) Give the steady-state equations.
- (3-3) Solve $p_{00}, p_{01}, p_{10}, p_{11}, p_{b1}$.
- (3-4) Find the expected number in the system L_s .

25%

- 4. Consider a maximization linear programming problem
- (4-1) Write down this model with specific dimensions.
- (4-2) State the Simplex Algorithm and estimate its complexity.
- (4-3) State the possibilities of the feasible solutions with the respective conditions.
- (4-4) State the possibilities of the optimal solutions with the respective conditions.
- (4-5) State how to calibrate the model if the model has (a).no feasible solution; (b) no optimal solution.

25%

- 5. Giving the maximization LP model as in problem (4-1)
- (5-1) Define the respective dual model.
- (5-2) State the relation of these two models and provide the evidence.
- (5-3) State which model should be used and why in terms of (a). Efficiency in finding solutions.
 - (b). Sensitivity Analysis