九十一學年度 工業工程與工程管理學系 系 (所) 組碩士班研究生招生考試 科目 1 3 頁第 1 頁 *請在試卷【答案卷】內作答

- 1. 以下每小題各 4 分共 20%
- 1-1 For the products a, b, c, d, which of the following could be a linear programming objective function?
 - (A) z = 1a + 2b + 3c + 4d
 - (B) z = 1a + 2bc + 3d
 - (C) z = 1a + 2ab + 3abc + 4abcd
 - (D) z = 1a + 2b/c + 3d
 - (E) all of the above
- 1-2 What combination of x and y will yield the optimum for the problem?

Maximize z = 3x + 15y

Subject to:

 $2x + 4y \le 12$

 $5x + 2y \le 10$

- (A) x = 2, y = 0
- (B) x = 0, y = 0
- (C) x = 0, y = 3
- (D) x = 1, y = 5
- (E) none of the above
- 1-3 In graphical linear programming, when the objective function is parallel to one of the constraints, then:
 - (A) the solution is suboptimal
 - (B) multiple optimal solutions exist
 - (C) a single corner point solution exists
 - (D) no feasible solution exists
 - (E) none of the above
- 1-4 A shadow price reflects which of the following in a maximization problem?
 - (A) the marginal cost of adding additional resources
 - (B) the marginal gain in the objective that would be realized by adding one unit of a resource
 - (C) the net gain in the objective that would be realized by adding one unit of a resource
 - (D) the marginal gain in the objective that would be realized by subtracting one

九十一學年度 工業工程與工程管理學系 系 (所) 組碩士班研究生招生考試 科目 1 3 科號 702 共 3 頁第 2 頁 *請在試卷【答案卷】內作答

unit of a resource

- (E) none of the above
- 1-5 In linear programming, sensitivity analysis is associated with:
 - I. objective function coefficient
 - II. right-hand side values of constraints
 - III. constraint coefficient
 - (A) I and II
 - (B) II and III
 - (C) I, II and III
 - (D) I and III
 - (E) None of the above

20%

The following is the current simplex tableau of a given maximization problem.
 The objective is to maximize 2x₁ - 3x₂, and the slack variables are x₃ and x₄. The constraints are of the ≤ type.

basis	z	X ₁	X2	Х3	X4	RHS
Z	1	b	1	f	g	6
X ₃	0	с	0	1	1/5	4
x ₁	0	ď	e	0	2	a

- (1) Find the unknowns a through g. (14%)
- (2) Is the tableau optimal? (3%)
- (3) Does there exist alternative optimal solution? (3%)

10%

Consider the following LP:

Minimize
$$z = 2x_1 + 15x_2 + 5x_3 + 6x_4$$

subject to. $x_1 + 6x_2 + 3x_3 + x_4 \ge 2$
 $2x_1 - 5x_2 + x_3 - 3x_4 \ge 3$
 $x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0$

- Give the dual of the problem. (5%)
- (2) Solve the dual geometrically. (5%)

5%

 For M/M/1/1 system (λ = average customer arrival rate, μ = average service rate), find the steady-state probability P_k = Prob(k customers in system) for each k.

10%

Consider the Markovian queueing system with the following state transition diagram. Find the average number of customers in the system.

10%

- 6. (6 a) Explain the "memoryless property".
 - (6 b) Give one continuous-time Markov chain which has memoryless property and prove your answer.

15%

- In an M/M/1 system (λ = average customer arrival rate, μ = average service rate), we assume that the probability of a customer's balking is 1-(1/2)ⁿ where n is the number of customers in the system.
 - (7 a) Construct the state transition diagram for this process.
 - (7 b) Develop the balance equations.
 - (7 c) Solve for steady-state probabilities P_k (in terms of P_0) for each $k \ge 1$.

10%

Consider an M/M/1 system where λ is 0.25 arrivals per minute. Let C_r be the cost for serving one unit and C_w be the cost of waiting per unit per minute. If C_r = \$0.04 and C_w = \$0.05, then find the minimum cost service rate.