科目 作業研究 科號 2202 共 2 頁第 1 頁 *請在試卷【答案卷】內作答

可使用非程式型(不具體存功能)計算機

10%

- 1. (1-a) For an M/M/1 system, does $L_a = L 1$?
 - (1-b) In the M/M/s/K queueing system, do we need the condition λ < μ?</p>
 You should give the reasons for your answers to (1-1) and (1-2). 不说明理由,
 将不予計分。

20%

- 2. Consider the birth-and-death process with the following mean rates. The birth rate are $\lambda_0 = 3$, $\lambda_1 = 4$, $\lambda_2 = 2$, $\lambda_3 = 1$, and $\lambda_n = 0$ for n > 3. The death rate are $\mu_1 = 2$, $\mu_2 = 3$, $\mu_3 = 1$, and $\mu_n = 2$ for n > 3.
 - (2-a) Construct the rate diagram for this birth-and-death process.
 - (2-b) Develop the balance equations.
 - (2-c) Solve the steady-state probability P_i $i = 0, 1, \ldots$
 - (2-d) Calculate L and W.

20%

3. The following observations have been made in a queueing system. There is only one server with the first-come, first-served basis. The time between successive arrivals and the actual time to serve them (excluding any waiting time) are given as follows.

Customer number	#1	#2	#3	#4	#5	#6
Interarrival Time	_	9	6	4	7	9
Service Time	3	7	9	9	10	4

- (3-a) Calculate the average time a customer must wait before being service.
- (3-b) Calculate the average waiting time including service.
- (3-c) Calculate the average length of the queue.
- (3-d) Calculate the average number of customers in the system.
- (3-e) Calculate the total idle time of the server.

科目<u>作業研究</u>科號 2202 共 2 頁第 2 頁 ***請在試卷【答案卷】內作答** 25%

4. Given a linear program as follows:

Max
$$z = 3x_1 + 2x_2$$

s.t. $2x_1 + x_2 \le 100$
 $x_1 + x_2 \le 80$
 $x_1 \le 40$
 $x_1, x_2 \ge 0$

- (4-a). (5%) Find optimal solution by graphic method.
- (4-b). (5%) For what values of the coefficient of x₁ in objective function does the current basis remain optimal? Explain from the graph.
- (4-c). (5%) For what values of the right hand side of the 1st constraint does the current basis remain optimal? Explain from the graph.
- (4-d). (10%) What is Shadow Price? Analyze shadow prices of the above problem directly without using Simplex Tableau.

25%

5.. Accer is about to introduce a new product (product 3). One unit of product 3 is produced by assembling 1 unit of product 1 and 1 unit of product 2. Before production begins on either product 1 or product 2, raw materials must be purchased and workers must be trained. Before products 1 and 2 can be assembled into product 3, the finished product 2 must be inspected. A list of activities and their predecessors and of the duration of each activity is given in table below.

Activity	Predecessors	Duration(days)
A = train workers		6
B = purchase raw materials		9
C= produce product 1	A, B	8
D= produce product 2	A. B	7
E= test product 2	D	10
F = assemble products 1 & 2	C, E	12

- (5-a). (10%) Draw a project diagram for this project with early and late event time.
- (5-b). (10%) Finding critical path both from the graph and formulate such LP model.
- (5-c). (5%) Since Accer's competitor is scheduled to hit the market 26 days, so Accer must introduce product 3 within 25 days. If the reduced duration of any activity can be up to 5 days with the cost per day shown below. Formulate an LP model to support Accer's decision on how to complete the project by the 25day deadline with the minimum cost.