可使用非但式型(不具储存功能)计算换

- 1. (20 pts.) Let the k^{th} standardized moment of X be $\mathbb{E}\{(X-\mu)/\sigma\}^k$, where $\mu=E(X)$ and σ is the standard deviation of X.
 - (a) Explain in word the meaning of the first four standardized moments (That is k=1,2,3,4)
 - (b) What are the first four standardized moments for a normal random variable.
- 2. (10 pts.) It is claimed that the failure rate of some printed circuit is less than 0.03. A new design has been implemented. A sample of size 100 circuits from the new design are inspected and there are 2 defective. Does this evidence support the calim? Give your approach to analyze the problem?
- 3. (20 pts.) You are asked to fit a distribution to a set of data of size 10 as follows. -2.5, -0.8, 0.3, 0.5, 1.2, 2.4, 2.0, 1.8, 1.6, 2.9.
 Which of the following distribution(s) is (are) appropriate to fit the data and which is (are) not. Why and why not.
 - (a) Uniform (0, 2)
 - (b) Uniform (-2.5, 3)
 - (c) Normal (0, 1)
 - (d) Exponential (1)
 - (e) Gamma (2, 3)
 - (f) beta (2,3)
 - (g) Weibull (2,3)
 - (h) Chi-squared (9)
 - (i) t-distribution (9)
 - (j) Poisson ($\lambda = 1$)

(note . $X \sim \text{Uniform (a,b)}$ if $f_X(x) = \begin{cases} \frac{1}{b-a}, & \text{if } a \leq x \leq b \\ 0, & \text{otherwise} \end{cases}$)

4. (10 pts.) A manufacturer of electronic calculators offers a one-year warranty. If the calculator fails for any reason during this period, it is replaced. The time to failure is well modeled by the following probability distribution:

$$f(x) = 0.125e^{-0.125x} \quad x > 0$$

What percentage of the calculators will fail within the warrany period?

- 5. (10 pts.) A lot of size N=30 contains five nonconforming units. What is the probability that a sample of five units selected at random contains exactly one nonconforming unit? What is the probability that it contains one or more nonconforming units?
- 6. (15 pts.) Two different types of glass bottles are suitable for use by a soft drink beverage bottler. The internal pressure strength of the bottle is an important quality characteristic. It is known that σ₁ = σ₂ = 30 psi · From a random sample of n₁ = n₂ = 16 bottles, the mean pressure strengths are observed to be x₁ = 175.8 psi and x₂ = 181.3 psi. The company will not use bottle design 2 unless its pressure strength exceeds that of bottle design 1 by at least 5 psi. Based on the sample data, should they use bottle design 2?
- 7. (15 pts.) It is generally believed that taller persons make better basketball players because they are better able to put the ball into the basket. The following table lists the height of a sample of 25 nonbasketball athletes and the number of successful baskets made in a 60-second time period.
 - (a) Perform a regression relating GOALS to HEIGHT to ascertain if there is such a relationship and, if there is, estimate the nature of that relationship.
 - (b) Estimate the number of goals to be made by an athlete who is 60 inches tall.

九十學年度 工業工程與工程管理系 (所) 工業工程 (九) 組碩士班研究生招生考試 (所) 1 (所) 科號 23°2 共 3 頁第 3 頁 *請在試卷【答案卷】內作答

Observation	HEIGHT	GOALS
i	71	15
2	74	19
3	70	11
4	71	15
5	69	12
6	73	17
7	72	15
8	75	19
9	72	16
10	74	18
11	71	13
12	72	15
13	73	17
14	72	16
15	71	15
16	75	20
17	71	15
1 8 .	75	19
19	78	22
20	79	23
21	72	16
22	75	20
23	76	21
24	74	19
25	. 70	13