(共五題,請依規定將答案寫在答案卷上)

(20%)

- Yes or No. Justify your answers.
 - (1-a) If an optimal solution exists for an linear program, then an optimal extreme point exists.
 - (1-b) For every extreme point of an LP, there corresponds a basis and vice versa.
 - (1-c) An advantage of the simplex method is that it will always terminate in a finite number of iterations.
 - (1-d) Once an primal LP is unbounded, we know that its dual is unbounded too and vise versa.
 - (1-e) When both primal and dual have the same feasible basic solutions, they both reach optimality.

(30%)

2. Consider a polyhedral set defined by the following inequalities

$$x_1 + x_2 \le 6$$

 $x_2 \le 3$
 $x_1 + 2x_2 \le 9$
 $x_1, x_2 \ge 0$

- (2-a) Find the basic feasible solutions by introducing the slack variables.
- (2-b) Show that the number of basic feasible solutions for m constraints and n variables is less than or equal to $\binom{n}{m}$.
- (2-c) Draw the figure of (2-a) and explain its result with (2-b).
- (2-d) If $2x_1 + x_2$ is going to be maximized, what would be the optimal solution(s) from the figure of (2-c)?
- (2-e) If the resource of 9 has been expanded to be 12, would the original optimal solution remains? If not, what it should be?

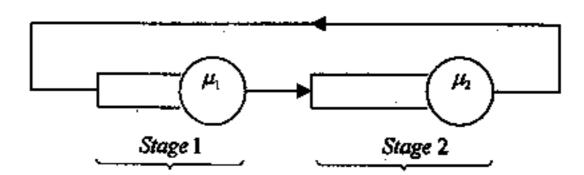
(20%)

- 3. Explain the following terminology in "queueing theory":
 - (3-a) lack of memory
 - (3-b) steady-state condition
 - (3-c) balk
 - (3-d)M/G/s model
 - (3-c) Little's formula (有二種 formula, 要解釋 formula 的符號。)

(20%)

4. Consider a birth-death system with the following birth and death coefficients:

$$\lambda_{k} = (k+2)\lambda$$
 $k = 0, 1, 2, ...$
 $\mu_{k} = k\mu$ $k = 1, 2, 3, ...$


All other coefficients are zero.

- (4-a) Draw the rate diagram (state-transition-rate diagram).
- (4-b) Calculate P_0 , P_1 , P_2 , P_3 , and P_k for $k=4,5,\ldots$ (Be sure to express your answer explicitly in terms of λ , μ , and k only.)
- (4-c) Find the average number of customers in the system.

(10%)

5. Consider a "cyclic queue" in which S customers circulate around through two queueing facilities as shown below. Both servers are of exponential type with rates μ_1 , μ_2 , respectively. Let

 $P_k = \text{Prob}\{k \text{ customers in stage } 1 \text{ and } S - k \text{ customers in stage } 2\}$

- (5-a) Draw the rate diagram (state-transition-rate diagram).
- (5-b) Write down the relationship among $\{P_k\}$. (不必解出 $P_k \circ$)