國 立 清 華 大 學 命 題 紙

- 1. Yes or No. If yes, give a brief proof, otherwise use an example to state why. (30%)
- (1) A homogeneous system always has a solution.
- (2) A nonhomogeneous system has a nontrivial solution if and only if the numbers of equations of the system equal the numbers of the variables.
- (3) If a set $S = \{v_1, \dots, v_p\}$ in R^n contains the zero vector, then the set is linearly independent.
- (4) If v_1, \ldots, v_4 are linearly independent vectors in R^4 , then $\{v_1, v_2, v_3\}$ is also linearly independent.
- (5) Let T: Rⁿ → R^m be a linear transformation and let A be the standard matrix for T. Then T maps Rⁿ onto R^m if and only if the columns of A span Rⁿ.
- (6) If an man matrix A has m pivot columns, then the equation Ax = b has a unique solution for every b in R^m .
- (7) A_{nxn} is an invertible matrix iff the equation Ax = 0 has nontrivial solutions.
- (8) We always can apply Cramer's Rule to find a solution of Ax = b.
- (9) Given a $b \in R^m$, if the equation Ax = b is consistent, then the column space of A_{man} is R^m .
- (10) Any complex system can be simplified by investigating its corresponding eigensystem.
 - 2. Orthogonally diagonalize the following two matrices. (10%)

$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$$

(b)

$$\mathbf{B} = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$$

Hint: Its characteristic equation is $-(\lambda - 7)^2(\lambda + 2) = 0$

國 立 清 華 大 學 命 題 紙

八十六學年度<u>乏养する</u>系(所)<u>エチ</u>組碩士班研究生入學者試 目<u>3乳 4~4~4、数</u> 科鉄 33°2 共 3 賈葉 2 頁 *調在試卷【答案卷】內作答

3. Determine whether the linear systems are consistent. If they are consistent, are their solutions "unique"? Give the reason for your answer. (10%)

(a)

$$2x_2 + 2x_3 = 0$$

$$x_1 - 2x_4 = -3$$

$$x_3 + 3x_4 = -4$$

$$-2x_4 + 3x_3 + 2x_4 + x_4 = 4$$

(b)

$$-3x_{4} - 6x_{5} + 4x_{4} = 9$$

$$-x_{5} - 2x_{1} - x_{5} + 3x_{4} = 1$$

$$-2x_{1} - 3x_{2} + 3x_{4} = -1$$

$$x_{5} + 4x_{5} + 5x_{5} - 9x_{4} = -7$$

4. Describe the solutions of Ax = b, where

(a)
$$A = \begin{bmatrix} 3 & 5 & -4 \\ -3 & -2 & 4 \\ 6 & 1 & -8 \end{bmatrix}, b = \begin{bmatrix} 7 \\ -1 \\ -4 \end{bmatrix}$$

(b)
$$\mathbf{A} = \begin{bmatrix} \mathbf{i} & 2 & -7 \\ -2 & -3 & 9 \\ 0 & -2 & 10 \end{bmatrix}, \ \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Indicate specifically their solutions as the parametric vector form, such as $\mathbf{z} = \mathbf{p} + t\mathbf{v}$. This is to specify what are \mathbf{p} , \mathbf{v} , and t respectively. (10%)

5.
$$\mathbf{A} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

The eigenvalues of the matrix A are 2 and 0. Find A 10. (5%)

國 立 清 華 大 學 命 題 紙

- Recall that an n=n matrix N is nilpotent if N^m = 0 for some integer m.
 (6-a) Show that the eigenvalues of a nilpotent matrix N are all zero. (10%)
 (6-b) Show conversely that if the eigenvalues of a matrix N are all zero, then N is nilpotent. (10%)
- 7. The number of an IC (Integrated Circuit) produced by a company for the last four-month period were as follows. Determine a least square line (called the cost-volume formula) and use it to predict the total cost for the next month (November) if production was planned to rise sharply to 1000 IC's. (15%)

	July	Aug	Sept	Oct
Number of IC produced	200	400	600	800
Total cost (in dollars)	820	1160	1430	1750