科目 化工熱力學及化學反應工程 科號 1402 共 3 頁第 1 頁 \*請在試卷【答案卷】內作答

### Problem 1 (20%)

For the reaction scheme of

$$2A \xrightarrow{k_1} A_2^*$$

$$A_2^* + B \xrightarrow{k_3} A + AB$$

where  $A_2^*$  is an intermediate substance, derive the rate equation for the formation of AB (  $r_{AB}$ ) in terms of the rate constants  $k_1$ ,  $k_2$ ,  $k_3$ ,  $k_4$ , and the concentrations [A], [B], [AB].

## Problem 2 (20%)

For the following liquid reaction  $A \rightarrow R$  which is catalyzed by enzyme, the reaction rate  $-r_A$  is found to be proportional to the initial enzyme concentration  $C_{E0}$ , and  $-r_A$  is proportional to the reactant concentration  $C_A$  at low reactant concentration. However, the reaction rate is independent of  $C_A$  at high reactant concentration. The volume does not change during the reaction.

(a) Develop a mechanism to show that this reaction follows the kinetics

$$k_1 \cdot C_{E0} \cdot C_A / (1 + k_2 C_A)$$

where k1 and k2 are rate constants. (5%)

- (b) If this reaction occurs in a batch reactor, develop the relationship between C<sub>A</sub> and time t for given C<sub>B0</sub> and initial concentration of A, C<sub>A0</sub>. (5%)
- (c) For a given C<sub>E0</sub>, schematically illustrate how you are going to design the experiments to find k<sub>1</sub> and k<sub>2</sub>.
  (5%)
- (d) If this reaction occurs in a steady state CSTR, develop a relationship between C<sub>A</sub> and space time τ for given C<sub>E0</sub> and initial concentration of A, C<sub>A0</sub>. (5%)

科目 化工熱力學及化學反應工程 科號 1402 共 3 頁第 2 頁 \*請在試卷【答案卷】內作答

#### Problem 3 (20%)

A real CSTR could be modeled as a combination of an ideal CSTR of volume  $V_s$ , a dead zone of volume  $V_d$ , and a bypass with a volumetric flow rate  $v_b$  (see the following figure). How do you use a tracer experiment to verify this model?



#### Problem 4 (20%)

Please determine the validity of the following statement and explain why:

- When a gas is expanded adiabatically PV<sup>γ</sup>=constant
- (ii) When an ideal gas is expanded adiabatically PV<sup>y</sup>=constant
- (iii) When a system's entropy increases, it must have undergone an irreversible process
- (iv) When a closed (no mass exchanged with surrounding) system's entropy increases, it must have undergone an irreversible process.
- (v) When oil is dispersed in water, the entropy of water increases
- (vi) When oil is dispersed in water, the entropy of oil increases
- (vii) When oil is dispersed in water, the total entropy of water and oil increases
- (viii) A bottle (with cap closed and half full) of water put on the table at room temperature, there are 2 degrees of freedom left
- (ix) A bottle (with cap closed and half full) of water put on the table at room temperature, there is 1 degree of freedom left

# 國 立 清 華 大 學 命 題 紙

| 九十三學年度                                                                                                                                                                                   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 科目 化工熱力學及化學反應工程 科號 1402 共 3 頁第 3 頁 *請在試卷【答案卷】內作答                                                                                                                                         |
| <u>Problem 5</u> (20%)                                                                                                                                                                   |
| (a) Vapor and liquid phases coexist in a binary system which has A and B constituents. What is the<br>mathematical expression which indicates that the system follows the Raoult's law?  |
| (b) What are the two major assumptions required for a system obeying the Raoult's law?                                                                                                   |
| (c) Please draw a schematic diagram which indicates the relationship between the Gibbs free energy vs. the<br>composition for the liquid phase in a system which obeys the Raoult's law. |
| (d) What is the definition of a partial free energy in a solution?                                                                                                                       |
| (e) How to determine the partial free energies of A and B respectively from the Gibbs free energy-composition<br>relationship as shown in (c)?                                           |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |
|                                                                                                                                                                                          |