國立清華大學命題紙

九十二學年度______化學工程學_____系(所)______組碩士班研究生招生考試

科目 化工熱力學及化學反應工程 科號 1202 共 4 頁第 1 頁 *請在試卷【答案卷】內作答

Problem 1 (20%)

You are assigned to study the phase behavior of liquid mixture of A and B components. The only available information is the diagram of Gibbs free energy change on mixing (i.e., the plot of ΔG_{mix} versus fA) at different temperatures where temperature T1 < T2 < T3 < T4 < T5 and T4 is the critical solution temperature. The initial state for these mixtures is indicated in the diagram. Please answer the following questions:

- a. What is the degree of freedom and the final composition(s) for the mixture at each indicated state?

 Please also specify the fraction of each phase while the mixture becomes a two-phase system. Finally, construct the phase diagram of T versus molar fraction regarding the phase diagram. (12%)
- b. What are the thermodynamic conditions for the mixture to reach two-phase equilibrium system? What are the criteria for the formation of stable two-phase equilibrium system?

(Hint: Describe your answer by using Gibbs free energy change on mixing!) (4%)

- c. Please determine the partial molar Gibbs free energy of A and B components for v mixture. The molar Gibbs free energy for pure A and B are 100 J/mol and 50 J/mol, respectively. (2%)
- d. Please justify the enthalpy of mixing (i.e., zero, endothermic or exothermic reaction), and explain your answer.

 (2%)

國 立 清 華 大 學 命 題 紙

九十二學年度	化學工程學	系(所)	組碩士班研究生招生考試

科目 化工熟力學及化學反應工程 科號 1202 共 4 頁第 2 頁 *請在試卷【答案卷】內作答

Problem 2 (20%)

A block of metal (10kG, MW=100, water insoluble, c_P=1 kJ/kG, T=400K) is thrown into a lake containing 1,800,000 kG water (MW=18, c_P=1 kJ/kG, T=300K) and comes to equilibrium. Calculate:

- 1. The enthalpy change of the metal
- 2. The entropy change of the metal
- 3. The enthalpy change of the water
- 4. The entropy change of the water
- 5. The total enthalpy change
- 6. The total entropy change

A block of water soluble compound (10kG, MW=100, c_p=1 kJ/kG, T=300K) is thrown into a pool containing 1,800,000 kG water (MW=18, c_p=1 kJ/kG, T=300K) and dissolves completely. Calculate:

- 7. The entropy change of the compound
- 8. The entropy change of the water
- 9. The total entropy change

Which process is more irreversible?

Given

R=8.314 J/(mol-K)

 $\log(300/400) = -0.2877$

 $\log(0.000001) = -13.805$

log(0.999999) = -1.e-6

國 立 清 華 大 學 命 題 紙

科目 化工熱力學及化學反應工程 科號 1202 共 4 頁第 3 頁 *請在試卷【答案卷】內作答

Problem 3 (20%)

For the gaseous reaction $H_2 + Br_2 = 2HBr$, the following mechanism has been proposed:

$$Br_2 \xrightarrow{k_1} 2Br$$
 (initiation)

$$Br^{\bullet} + H_2 \xrightarrow{k_2} H^{\bullet} + HBr$$

$$H^{\bullet} + Br_2 \xrightarrow{k_3} Br^{\bullet} + HBr$$

$$H^{\bullet} + HBr \xrightarrow{k_4} H_2 + Br^{\bullet}$$

$$2 \operatorname{Br} \xrightarrow{k_5} \operatorname{Br}_2$$
 (termination)

Show that this mechanism leads to the rate equation of

$$r = \frac{dC_{HBr}}{dt} = \frac{k_2 C_{H2} C_{Br2}^{-1/2}}{1 + k_1 C_{HBr} / C_{Br2}}$$

You should define the symbols and write down every step for your derivation.

Problem 4 (20%)

For a reaction with reaction rate curve as shown (C_A is the concentration of reactant, $-r_A$ is the reaction rate), the volumetric flow rate (v_o), the initial and final reactant concentrations, C_{Ao} and C_{Af} , are known.

Describe and sketch how you are going to minimize the size of reactor(s) if you are using

(i) 1 PFR with recycle (also determine the recycle flow rate) (8%)

(ii) 2 CSTR (different sizes) in series (8%)

(iii) 1 PFR and 1 CSTR (4%)

You only need to explain by graphical method and write down the equations for calculation, but no numbers are required. Use notations of your choice if necessary.

國	立	淸	華	大	學	命	題	紙
		. • -	•	, ,	•		,~	1120

科目 化工熱力學及化學反應工程 科號 1202 共 4 頁第 4 頁 *請在試卷【答案卷】內作答

Problem 5 (20%)

Consider a liquid phase reaction

$$A \xrightarrow{k_1} B$$
, $r_1 = k_1 C_A$

$$A \xrightarrow{k_1} B$$
, $r_1 = k_1 C_A$
 $A \xrightarrow{k_2} C$, $r_2 = k_2 C_A^2$

- (a) Will a PER give a smaller reactor size and a better selectivity of B than a CSTR for the same conversion? (5%)
- (b) Find an expression for space time (θ_m) in a CSTR in term of k₁, k₂, C_{A0} and C_A. (5%)
- (c) Find space time, selectivity of B (S_B) in a CSTR at 90% conversion of A with $C_{A0} = 2$ moles/liter, $k_1 = 4hr^{-1}$ and $k_2 = 1hr^{-1}$ (mole/liter)⁻¹. (10%)