國立清華大學命題紙

Problem 1 (20%)

(a) A vessel, divided into two parts by a partition, contains 2 moles of ideal gas A at one side at 300 K and 10^5 Pa and 3 moles of ideal gas B at 400 K and 4×10^5 Pa. What is the volume of the ideal gas A? (b) The gas A is first compressed isothermally to 2×10^5 Pa by following a reversible process. Please calculate Q, W, ΔU , and ΔH for the process. (c) The partition is then removed. The gases A and B mix adiabatically and completely. What is the temperature of the gas mixture? What is the pressure of the gas mixture? What is the change in ΔS ? The heat capacities of the two gases are $C_p = 3.5$ R and $C_v = 2.5$ R. R is the universal gas constant and is 8.314 J mol⁻¹ K⁻¹(8.314 m³ Pa mot⁻¹ K⁻¹). $\ell n 2 = 0.6931$, $\ell n 3 = 1.0986$, $\ell n 5 = 1.6094$, $\ell n 7 = 1.9459$.

Problem 2 (20%)

- (i) Draw the p-x₁-y₁ phase diagrams of a binary mixture at constant temperature: (a) T_a < T_{c1}, T_{c2}, (b) T_{c1} < T_b < T_{c2}, and (c) T_d > T_{c1}, T_{c2}.
 T_{c1} and T_{c2} are critical temperatures of components 1 and 2, respectively.
- (ii) Write $\frac{\Delta G}{RT}$, $\frac{P\Delta V}{RT}$, $\frac{\Delta H}{RT}$, and $\frac{\Delta S}{R}$ in terms of activities and find the corresponding expressions for ideal solutions.

Note: ΔM is the property change of mixing.

Problem 3 (20%)

$$H_2 + CO_2 = CO + H_2O$$

- 1. (4%) Write down the stoichiometric coefficient of H2, CO2, CO, H2O
- (2%) Define the extent of this reaction
- (4%) If there are 0.5 mole of H₂ and 0.5 mole of CO₂ initially, what are the mole fraction of H₂,CO₂,CO,H₂O when the extent of reaction is 0.2.
- 4. (2%) The Gibbs free energy of formation at 1000 K of CO₂, CO, H₂O are -192,420, -200,240 and -395,790 J mo!⁻¹ respectively. Find the initial Gibbs free energy of the system
- 5. (6%) Find Gibbs free energy when the extent of reaction are 0.2 and 0.4
- (2%) Which extent of reaction is closer to equilibrium

化學工程學 八十八學年度

系(所)

組碩士班研究生招生考試

科目

化工熱力學及化學反應工程 ALBE 2402

頁第² 頁 *請在試卷【答案卷】內作答

The following data are given to facilitate calculations:

$$R = 8.314 \frac{J}{\text{K} \cdot \text{mol}} \qquad RT = 8314 \frac{J}{\text{mol}}$$

- ln(x)
- 0.1 -2.30259
- 0.2 -1.60944
- 0.3 -1.20397
- 0.4 -0.91629
- -0.69315 0.5
- -0.51083 0.6
- 0.7 -0.35667
- 0.8 -0,22314
- 0.9 -0.10536

Problem 4 (20%)

The overall reaction for the thermal decomposition of acetaldehyde is

$$CH_3CHO \rightarrow CH_4 + CO$$

A chain-reaction sequence of elementary steps proposed to explain the decomposition is as, follows:

Initiation

$$CH_3CHO \xrightarrow{k_1} CH_3$$
 + CHO

Propagation

Termination

$$CH_3' + CH_3' \xrightarrow{k_4} C_2H_6$$

Use the stationary-state approximation to derive an expression for the overall rate of decomposition.

國立清華大學命題紙

	八十八學年度	化學工程學	30.00	系(所	}	組碩士班研	"杂牛招生	
科目_	化工热力學及化	學反應工程 科聯	2402	# 3	百無 3	M 50	56 - WARES A	
	m 5 (20%)				_52,973	頁 +請在試卷	<u> </u>	MIF音

Compound A undergoes a reversible reaction A B in a plug flow reactor. The feed to the reactor is pure A and the reaction is elementary. A and B are liquid, miscible, and of nearly indentical density. The product from the plug flow reactor are separated and only the unconverted A is fed to a second, identical reactor.

- (5%) (1) Derive the equation for the conversion of A in the first reactor, x₁.
- (10%) (2) Derive the equation for the conversion of A in the second reactor, x2, in terms of x1 and Keq.
- (5%) (3) Find the overall conversion X.

Notation:

k :forward reaction rate constant

Keq : equilibrium constant for the reaction

FAO :molar flow rate of A to the first reactor

CAO : concentration of A in the feed to the first reactor

V: : :reactor volume