國 立 清 華 大 學 命 題 紙

九十一學年度 化 工 系轉學生招生考試

- 一. 填充題(共六題,每題八分,共 48 分,請將答案依甲、乙、丙次序作答,不需演算過程)
 - 1. $\lim_{x\to\infty} x \ln\left(\frac{x+1}{x-1}\right) =$
 - 2. Define $F(x) = \int_{\sin x}^{\cos x} e^{t^2+xt} dt$. Then $F'(0) = \underline{\underline{\hspace{1cm}}}$
 - $3. \int_0^{\frac{\pi}{2}} \frac{dx}{4\sin x + 3\cos x} = \overline{\square}.$
- 4. Let P be the tangent plane to the surface $x^2 + 2y^2 + 2z^2 = 14$ at the point (2, 1, -2). Then the equation of $P = \underbrace{ }$.
- 5. Let parabola $Q: y = ax^2 + bx + c$ (a < 0) pass through the points (-1, 1) and (1, 1). Then the minimum of the area of the region between by the parabola Q and the x-axis = $\frac{1}{2}$.
- 6. Let R be the region inside the circle r=1 and outside the cardioid $r=1-\cos\theta$. Then the area of R=
- 二、計算題(共 52 分, 必須寫出演算過程)
 - 1. (11%) Prove that $(\cos \theta)^p \le \cos(p\theta)$ for $0 \le \theta \le \pi/2$ and 0 .
 - 2. Let p and q be real constants. Do the followings by Calculus.
- (3%) (a) Prove that, if p > 0, the equation $x^3 + px + q = 0$ has exactly one real root.
- (8%) (b) Prove that, if $4p^3+27q^2<0$, the equation $x^3+px+q=0$ has exactly three distinct real roots.
- 3. (8%) (a) Determine whether $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ converges. (State the theorem used and check the conditions.)
- (7%) (b) Determine whether $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$ converges. (State the theorem used and check the conditions.)
 - 4. (15%) Find the absolute maximum and absolute minimum values of

$$f(x,y) = x^2 + y^2 - 2x - 4y$$

on the disk R of radius 3 and center (0,0).