九十一學年度 八 系 聯 招 系轉學生招生考試

- I. 填充題(共三題,每題八分,請將答案依甲,乙,丙次序作答,不需演算過程)
- (1). Find $\lim_{x \to +\infty} \{(x^3 2x^2 + 1)^{1/3} x\}$. Ans. Ψ
- (2). Find the domain of convergence of $\sum_{n=1}^{\infty} \frac{3^n + (-2)^n}{n} (x+1)^n$. (including the end points) Ans. \underline{Z}
- (3). Evaluate the surface integral $\iint_S (\nabla \times \vec{F}) \cdot \vec{n} \ d\sigma$, where S is the hemisphere $\{(x,y,z)|x^2+y^2+z^2=1,\ z\geq 0\}$, oriented upward, and $\vec{F}(x,y,z)=(x^2\sin z,x,(1+z)e^{xy})$. Ans. \boxed{F}
 - II. 計算與證明題 (共七題 ,必須寫出演算證明過程)
- (1). (12 points) Let $f(x,y) = \frac{x^2y+y^4}{x^2+y^2}$ if $(x,y) \neq (0,0)$ and f(0,0) = 0. Let $\bar{u} = (a,b)$ be an unit vector. Find the directional derivative $D_{\bar{u}}f(0,0)$. Is f differentiable at (0,0)? Give your reasons.
- (2). (12 points) Find the critical points of $f(x,y) = x^3 + y^2 27x + 4y + 1$ and determine whether it is a maximum, minimum or saddle point.
- (3). (12 points) Evaluate the integral $\iint_D e^{\frac{x}{x-2y}} dxdy$, where D is the trapezoidal region with vertices (1,0), (2,0), (-1,-1) and (-2,-2).
- (4). (10 points) Let $f: (-1,1) \to \mathbb{R}$ be a bounded function, i.e., there is a M > 0 such that $|f(x)| \le M$ for all $x \in (-1,1)$. Define g(x) = xf(x). Is g differentiable at 0? Give your reasons.
 - (5). (10 points) Evaluate $\int_{2}^{10} \frac{x+1}{x\sqrt{x+1}} dx$.
- (6). (10 points) Find the extreme values of $f(x, y, z) = xy + z^2$ subject to the constraints: $x^2 + y^2 + z^2 = 4$ and x y = 0.
- (7). (10 points) Apply Green's theorem to find the area of the region enclosed by the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = 1$.