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2. The equation of the plane tangent to the surface

Z=Fcosy —ye"
&t the origin is 4

3. ! = A
0 2+=sinz

4. The region bounded by the curve y = z° + 1 and the line y = —z + 3 is re-
volved about the y-axis to generated a solid B. The volume of B= 1

& 1{ﬂ+1}“

5. Let { be the interval of convergence of the series 3 IE(::—E}“‘ Then

= X . (Note. The boundary points of 7 should also be considered.)

. " 6. Lat J be the area of the region bounded below by the z-axis and above by
the curve parameterized by £ = a(@ —sinf), y = afl —cosf) for 0 < & < 2r.

Then J= O
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I. (11%)
Sketch the graph of : :
r=sind4d, 0 << xw

aﬁthepoiarplme.

2. (11%)

Find the surface ares of the sofid D be obtained by revolving about the z-axis
the region bounded by ¥ = £7%7 and the T-axis to the right of z = 1; that i,
r=1. . ' .

3. (15%)
Evalnate [ff {zpz|dedydz over the solid ellipsoid

4. {15%).

The plane = + 2y + 3z = 1 cuts the cylinder 22 + 32 =1 in an ellipse.

Cnuestion. Find the poims on the ellipse that Ye closest o and farthest from
the origin. {Hint. By the method of Lagrange multipliers. }
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