國立清華大學命題紙

九十學年度 計量財務金融學系 轉學生招生考試

科目 微積 分 科號 <u>143 共 2 頁第 1 頁 *詩在試卷【答案卷】內作答</u>

I. 填充題(共六題,每題八分,請將答案依甲、乙、丙....次序作答,不需演算過程)

1.
$$\lim_{n\to\infty} \left(\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n}\right) = \underline{\qquad }$$

2. The equation of the plane tangent to the surface

$$z = x \cos y - y e^x$$

at the origin is \underline{Z} .

$$3. \int_{0}^{\pi} \frac{1}{2 + \sin x} dx = \underline{\overline{P}}.$$

- 4. The region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 is revolved about the y-axis to generated a solid B. The volume of $B = \frac{1}{1 x^2}$.
- 5. Let I be the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n} \frac{(x+1)^n}{(x-3)^n}$. Then $I = \bigcup_{n=1}^{\infty} \frac{1}{n} \frac{(x+1)^n}{(x-3)^n}$. (Note. The boundary points of I should also be considered.)
- 6. Let J be the area of the region bounded below by the x-axis and above by the curve parameterized by $x = a(\theta \sin \theta)$, $y = a(1 \cos \theta)$ for $0 \le \theta \le 2\pi$. Then $J = \Box$

九十學年度 計量財務金融學系 轉學生招生考試

科目 _ 微 積 分 _ 科號 _ 143 _ 共 _ 2 頁 第 _ 2 頁 *請在試卷【答案卷】內作答

II. 計算與證明題(必須寫出演算證明過程)

1. (11%)

Sketch the graph of

$$r = \sin 4\theta$$
, $0 \le \theta \le \pi$

on the polar plane.

2. (11%)

Find the surface area of the solid D be obtained by revolving about the x-axis the region bounded by $y = x^{-2/3}$ and the x-axis to the right of x = 1; that is, $x \ge 1$.

3. (15%)

Evaluate $\iiint |xyz| dxdydz$ over the solid ellipsoid

$$E: \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1 \ (a, b, c > 0).$$

4. (15%).

The plane x + 2y + 3z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse.

Question. Find the points on the ellipse that lie closest to and farthest from the origin. (Hint. By the method of Lagrange multipliers.)