國 立 清 華 大 學 命 題 紙

九十學年度 經濟學系 轉學生招生考試

科目 微積分 科號 123 共 2 頁第 1 頁 *請在試卷【答案卷】內作答

- I. 填充題(共六題·每題八分,請將答案依甲、乙、丙....次序作答,不需演算過程)

 - 2. Let $y = \int_{x}^{x^2} \sin(t^2) dt$. Then $\frac{d^2y}{dx^2} = Z$.
 - $3. \int_{0}^{1} \frac{\sqrt{2x-x^2}}{x} dx = \underline{\overline{P}}.$
- 4. The region bounded by the curve $y = x^2 + 1$ and the line y = -x + 3 is revolved about the y-axis to generated a solid B. The volume of B =______.
 - 5. Let I be the interval of convergence of the series

$$\sum_{n=1}^{\infty} (1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n})(1-x)^n, \ x \in \mathbb{R}.$$

Then $I = \frac{\mathcal{R}}{\mathcal{R}}$. (Note. The boundary points of I should also be considered.)

6. Let J be the area of the region bounded below by the x-axis and above by the curve parameterized by $x=a(\theta-\sin\theta),\ y=a(1-\cos\theta)$ for $0\leq\theta\leq2\pi$.

Then
$$J = \Box$$

國立清華大學命題紙

九十學年度 經濟 祭 系 轉學生招生考試

科自 _ 微 藏 分 _ 科號 _ 123 _ 共 _ 2 页 第 _ 2 页 *請在試卷【答案卷】內作签

Ⅱ. 計算與證明題(必須寫出演算證明過程)

- 1. (11%)
- (a) Show that the equation $x^2 = \cos x$ has exactly two real roots.
- (b) Let r_1 and r_2 be the roots of the equation. Find $r_1 + r_2$.

2. (11%)

Find the surface area of the solid D be obtained by revolving about the x-axis the region bounded by $y = x^{-2/3}$ and the x-axis to the right of x = 1; that is, $x \ge 1$.

3. (15%)

The curve $y = \sin x$, $0 \le x \le \pi$, is revolved about the line y = c, $0 \le c \le 1$, to generate the solid in the next figure.

- (a) Find the value of c in [0,1] that minimizes the volume of the solid. What is the minimum value?
- (b) Find the value of c in [0,1] that maximizes the volume of the solid. What is the maximum value?

4. (15%)

The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse.

Question. Find the points on the ellipse that lie closest to and farthest from the origin. (Hint. By the method of Lagrange multipliers.)